Ultrathin high-entropy layered double hydroxide electrocatalysts for enhancing oxygen evolution reaction

被引:0
|
作者
Chu, Xianxu [1 ]
Wang, Ting [2 ]
Wang, Haoyuan [1 ]
Du, Bingbing [1 ]
Guo, Guanqun [1 ]
Zhou, Yanli [1 ]
Dong, Xuelin [1 ]
机构
[1] Shangqiu Normal Univ, Coll Chem & Chem Engn, Henan Key Lab Biomol Recognit & Sensing, Henan Joint Int Res Lab Chemo Biosensing & Early D, Shangqiu 476000, Peoples R China
[2] Shanghai Univ Elect Power, Coll Environm & Chem Engn, Shanghai Key Lab Mat Protect & Adv Mat Elect Power, 2588 Changyang Rd, Shanghai 200090, Peoples R China
关键词
High-entropy; Layered double hydroxides; Ultrathin structure; Oxygen evolution reaction; OXIDE; PERFORMANCE; NANOSHEETS;
D O I
10.1016/j.jallcom.2024.175584
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
At the heart of the oxygen evolution reaction (OER), the properties of electrocatalysts play a crucial role in determining reaction efficiency. This underscores the need to design and develop highly effective OER electrocatalysts. The unique layer structure and electronic properties make layer double hydroxide (LDH) a promising candidate for driving OER electrocatalysis. Furthermore, high-entropy materials (HEMs) exhibit core effects such as high entropy, lattice distortion, sluggish diffusion, and cocktail effect, which can enhance active sites and optimize binding energy with intermediates. Combining the advantages of these two material categories, we propose the synthesis of high-entropy layered double hydroxides (HE-LDHs) through a straightforward MOFmediated synthesis method to showcase exceptional electrocatalytic OER performance. Detailed mechanistic studies have shown that its outstanding performance stems from its ultrathin structure and the inherent activity of a high-entropy material that promotes charge transfer, mass transport, and the evolution of reaction intermediates.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction
    Yongji Qin
    Fanping Wang
    Jing Shang
    Muzaffar Iqbal
    Aijuan Han
    Xiaoming Sun
    Haijun Xu
    Junfeng Liu
    Journal of Energy Chemistry, 2020, (04) : 104 - 107
  • [22] Fabrication of a novel superaerophobic support structure for NiCo-layered double hydroxide electrocatalysts for the oxygen evolution reaction
    Abbasi, Somayyeh
    Hao, Minghui
    Fakourihassanabadi, Mohsen
    Thorpe, Steven
    Guay, Daniel
    ELECTROCHIMICA ACTA, 2024, 481
  • [23] Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction
    Qin, Yongji
    Wang, Fanping
    Shang, Jing
    Iqbal, Muzaffar
    Han, Aijuan
    Sun, Xiaoming
    Xu, Haijun
    Liu, Junfeng
    JOURNAL OF ENERGY CHEMISTRY, 2020, 43 : 104 - 107
  • [24] A high-entropy phosphate catalyst for oxygen evolution reaction
    Qiao, Haiyu
    Wang, Xizheng
    Dong, Qi
    Zheng, Hongkui
    Chen, Gang
    Hong, Min
    Yang, Chun-Peng
    Wu, Meiling
    He, Kai
    Hu, Liangbing
    NANO ENERGY, 2021, 86
  • [25] Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution
    Jinqiang Gao
    Haifeng Yuan
    Xinjuan Du
    Feng Dong
    Yu Zhou
    Shengnan Na
    Yanpeng Chen
    Mingyu Hu
    Mei Hong
    Shihe Yang
    Chinese Chemical Letters, 2025, 36 (01) : 367 - 372
  • [26] Recent Progress in High-Entropy Alloy Electrocatalysts for Hydrogen Evolution Reaction
    Wang, Qian
    Xie, Jiacheng
    Qin, Yao
    Kong, Yafen
    Zhou, Shunxin
    Li, Qingyi
    Sun, Qian
    Chen, Bo
    Xie, Peng
    Wei, Zengxi
    Zhao, Shuangliang
    ADVANCED MATERIALS INTERFACES, 2024, 11 (14)
  • [27] Triethanolamine-assisted synthesis of NiFe layered double hydroxide ultrathin nanosheets for efficient oxygen evolution reaction
    Zheng, Yingqiu
    Deng, Haoyuan
    Feng, Haoran
    Luo, Guoqiang
    Tu, Rong
    Zhang, Lianmeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 629 : 610 - 619
  • [28] Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation
    Kaizhi Gu
    Xiaoyan Zhu
    Dongdong Wang
    Nana Zhang
    Gen Huang
    Wei Li
    Peng Long
    Jing Tian
    Yuqin Zou
    Yanyong Wang
    Ru Chen
    Shuangyin Wang
    Journal of Energy Chemistry, 2021, 60 (09) : 121 - 126
  • [29] Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation
    Gu, Kaizhi
    Zhu, Xiaoyan
    Wang, Dongdong
    Zhang, Nana
    Huang, Gen
    Li, Wei
    Long, Peng
    Tian, Jing
    Zou, Yuqin
    Wang, Yanyong
    Chen, Ru
    Wang, Shuangyin
    JOURNAL OF ENERGY CHEMISTRY, 2021, 60 (60): : 121 - 126
  • [30] Modulating the electronic structure of ultrathin layered double hydroxide nanosheets with fluorine: an efficient electrocatalyst for the oxygen evolution reaction
    Liu, Zhijuan
    Dong, Chung-Li
    Huang, Yu-Cheng
    Cen, Jiajie
    Yang, Haotian
    Chen, Xiaobo
    Tong, Xiao
    Su, Dong
    Wang, Yanyong
    Wang, Shuangyin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (24) : 14483 - 14488