Mechanical properties and microstructure of cement-based materials by different high-temperature curing methods: A review

被引:4
|
作者
Yang, Haixu [1 ]
Shen, Zhongke [1 ]
Zhang, Maohua [2 ]
Wang, Zhen [1 ]
Li, Jiamin [1 ]
机构
[1] Northeast Forestry Univ, Sch Civil & Transportat Engn, Harbin 150040, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Beijing 100083, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
High-temperature curing methods; Cement-based materials; Mechanical properties; Hydration reactions; Microstructure; HIGH-STRENGTH CONCRETE; REACTIVE POWDER CONCRETE; HIGH PERFORMANCE CONCRETE; VOLUME FLY-ASH; COMPRESSIVE STRENGTH; SETTING TIME; MICROWAVE; HYDRATION; SLAG; DURABILITY;
D O I
10.1016/j.jobe.2024.110464
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Due to the swift growth and advancement of the country's infrastructure, there is a heightened demand for shorter construction periods and enhanced concrete quality in building projects. Precast concrete, owing to its merits, such as quality control and time efficiency, holds significant promise for the future development of the building industry. Concrete performance is profoundly affected by the method of curing, and precast concrete typically requires heating in order to reach demolding strength as soon as is practical. This research examines the influence of various high- temperature curing techniques on the mechanical properties and microstructure of cementitious materials and analyzes their mechanisms of action. Different methods of heating the concrete-such as steam curing, autoclave curing, microwave curing, and direct electric curing-speed up the cement hydration, encourage the creation of hydration products, enhance the concrete's early microstructure, and increase its early strength. However, these methods also cause varying degrees of deterioration to the concrete's strength and microstructure in the later stages. The article strives to thoroughly compare the impact of multiple high-temperature curing methods on the mechanical properties and microstructure of cement-based materials, as well as establish a pertinent theoretical basis for the use of high-temperature and rapid curing of concrete in actual projects.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Methods for Evaluating Mechanical Properties of Cement-based Tubes
    Nie G.
    Bao Y.
    Wan D.
    Tian Y.
    Bao, Yiwang (ywbao@ctc.ac.cn), 2018, Cailiao Daobaoshe/ Materials Review (32): : 2072 - 2077and2084
  • [32] Mechanical properties of high porosity cement-based foam materials modified by EVA
    Sang, Guochen
    Zhu, Yiyun
    Yang, Gang
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 112 : 648 - 653
  • [33] Hydration and mechanical properties of cement-based materials with high use level of metakaolin
    Qiao, Chunyu
    Ni, Wen
    Wang, Changlong
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2015, 18 (05): : 757 - 762
  • [34] Properties of Bamboo Charcoal and Cement-based Composite Materials and Their Microstructure
    王中平
    LI Haoxin
    蒋正武
    CHEN Qing
    Journal of Wuhan University of Technology(Materials Science), 2017, 32 (06) : 1374 - 1378
  • [35] Mechanical properties and microstructure of graphene oxide cement-based composites
    Peng, Hui
    Ge, Yaping
    Cai, C. S.
    Zhang, Yongxing
    Liu, Zhen
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 194 : 102 - 109
  • [36] Accelerators for normal concrete: A critical review on hydration, microstructure and properties of cement-based materials
    Wang, Yifei
    Lei, Lei
    Liu, Jianhui
    Ma, Yihan
    Liu, Yi
    Xiao, Zhiqiang
    Shi, Caijun
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [37] Properties of Bamboo Charcoal and Cement-based Composite Materials and Their Microstructure
    Wang Zhongping
    Li Haoxin
    Jiang Zhengwu
    Chen Qing
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2017, 32 (06): : 1374 - 1378
  • [38] Properties of bamboo charcoal and cement-based composite materials and their microstructure
    Zhongping Wang
    Haoxin Li
    Zhengwu Jiang
    Qing Chen
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32 : 1374 - 1378
  • [39] Study on mechanical properties and application of cement-based materials with different properties under impact load
    Wu, Shaokang
    Zhang, Junwen
    Xu, Youlin
    Song, Zhixiang
    Zhang, Yang
    Dong, Xukai
    Zeng, Banquan
    Wang, Shiji
    Xing, Chaorui
    Bai, Xuyang
    Zhang, Suilin
    Li, Xian
    Xu, Weizheng
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 464
  • [40] Influence of Carbon Nanofibers on the Mechanical Performance and Microstructure of Cement-Based Materials
    Wang, Bao-Min
    Zhang, Yuan
    Liu, Shuai
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (10) : 1112 - 1118