GARCH based value-at-risk assessment when the observed process is iid

被引:0
|
作者
Khardani, Salah [1 ]
Raissi, Hamdi [2 ]
Villegas, Camila [2 ]
机构
[1] Univ El Manar, Fac Sci Tunis, Tunis, Tunisia
[2] PUCV, Inst Stat, Valparaiso, Chile
关键词
GARCH models; Value-at-risk;
D O I
10.1080/03610918.2024.2397549
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the estimation of Value-at-Risk (VaR) using GARCH models when the observed process is actually iid. Such an overfitting situation entails that the almost sure consistency of the quasi-maximum likelihood estimator (QMLE) is not ensured. Therefore, a simulation experiment is performed to shed some light on the consequences of such a poor parameters estimation on the VaR assessment. Since the GARCH specification is not identified when the ARCH and persistence parameters are equal to zero, then a constant volatility is predicted. As a consequence, it turns out that the VaR evaluation is not affected by the estimation drawbacks.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [31] Evaluating portfolio Value-at-Risk using semi-parametric GARCH models
    Rombouts, Jeroen V. K.
    Verbeek, Marno
    QUANTITATIVE FINANCE, 2009, 9 (06) : 737 - 745
  • [32] Value-at-Risk based portfolio optimization
    Von Puelz, A
    STOCHASTIC OPTIMIZATION: ALGORITHMS AND APPLICATIONS, 2001, 54 : 279 - 302
  • [33] PORTFOLIO OPTIMIZATION BASED ON VALUE-AT-RISK
    Marinescu, Ilie
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2013, 14 (03): : 187 - 192
  • [34] An Online Risk Based Security Assessment Via Conditional Value-at-risk in Uncertain Environment
    Deng, Wei-si
    Wu, Jia-si
    Zhang, Bu-han
    Ding, Hong-fa
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND AUTOMATION (ICEEA 2016), 2016,
  • [35] Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information
    Xu, Yan
    Wang, Xinyu
    Liu, Hening
    FINANCE RESEARCH LETTERS, 2021, 43
  • [36] Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid
    Marius Lux
    Wolfgang Karl Härdle
    Stefan Lessmann
    Computational Statistics, 2020, 35 : 947 - 981
  • [37] Confidence intervals for ARMA-GARCH Value-at-Risk: The case of heavy tails and skewness
    Spierdijk, Laura
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 100 : 545 - 559
  • [38] Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid
    Lux, Marius
    Haerdle, Wolfgang Karl
    Lessmann, Stefan
    COMPUTATIONAL STATISTICS, 2020, 35 (03) : 947 - 981
  • [39] Estimation of value-at-risk for energy commodities via fat-tailed GARCH models
    Hung, Jui-Cheng
    Lee, Ming-Chih
    Liu, Hung-Chun
    ENERGY ECONOMICS, 2008, 30 (03) : 1173 - 1191
  • [40] Value-at-Risk under Levy GARCH models: Evidence from global stock markets
    Slim, Skander
    Koubaa, Yosra
    Bensaida, Ahmed
    JOURNAL OF INTERNATIONAL FINANCIAL MARKETS INSTITUTIONS & MONEY, 2017, 46 : 30 - 53