New gaps on the Lagrange and Markov spectra

被引:0
|
作者
Jeffreys, Luke [1 ]
Matheus, Carlos [2 ]
Moreira, Carlos Gustavo [3 ,4 ]
机构
[1] Univ Bristol, Sch Math, Fry Bldg,Woodland Rd, Bristol BS8 1UG, England
[2] Ecole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
[3] SUSTech Int Ctr Math, Shenzhen, Guangdong, Peoples R China
[4] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
来源
关键词
Lagrange and Markov spectra; maximal gaps; Hausdorff dimension; SETS;
D O I
10.5802/jtnb.1280
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L and M denote the Lagrange and Markov spectra, respectively. It is known that L subset of M and that M \ L not equal empty set. In this work, we exhibit new gaps of L and M using two methods. First, we derive such gaps by describing a new portion of M \ L near to 3.938: this region (together with three other candidates) was found by investigating the pictures of L recently produced by V. Delecroix and the last two authors with the aid of an algorithm explained in one of the appendices to this paper. As a by-product, we also get the largest known elements of M \ L and we improve upon a lower bound on the Hausdorff dimension of M \ L obtained by the last two authors together with M. Pollicott and P. Vytnova (heuristically, we get a new lower bound of 0.593 . 593 on the dimension of M \ L ). Secondly, we use a renormalisation idea and a thickness criterion (reminiscent from the third author's PhD thesis) to detect infinitely many maximal gaps of M accumulating to Freiman's gap preceding the so-called Hall's ray [4.52782956616. . 52782956616 . .. , infinity) C L .
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Hausdorff dimension of Gauss-Cantor sets and two applications to classical Lagrange and Markov spectra
    Matheus, Carlos
    Moreira, Carlos Gustavo
    Pollicott, Mark
    Vytnova, Polina
    ADVANCES IN MATHEMATICS, 2022, 409
  • [22] ON THE GAPS OF THE MARKOV SPECTRUM
    DIETZ, B
    MONATSHEFTE FUR MATHEMATIK, 1983, 96 (04): : 265 - 267
  • [23] On the nonarchimedean quadratic Lagrange spectra
    Parkkonen, Jouni
    Paulin, Frederic
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (3-4) : 1065 - 1084
  • [24] On the nonarchimedean quadratic Lagrange spectra
    Jouni Parkkonen
    Frédéric Paulin
    Mathematische Zeitschrift, 2020, 294 : 1065 - 1084
  • [25] On spectral gaps of Markov maps
    José M. Conde-Alonso
    Javier Parcet
    Éric Ricard
    Israel Journal of Mathematics, 2018, 226 : 189 - 203
  • [26] On spectral gaps of Markov maps
    Conde-Alonso, Jose M.
    Parcet, Javier
    Ricard, Eric
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (01) : 189 - 203
  • [27] LARGEST GAPS IN LOWER MARKOV SPECTRUM
    CUSICK, TW
    DUKE MATHEMATICAL JOURNAL, 1974, 41 (02) : 453 - 463
  • [28] Fractal geometry of the complement of Lagrange spectrum in Markov spectrum
    Matheus, Carlos
    Moreira, Carlos Gustavo
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (03) : 593 - 633
  • [29] Markov's inequality on compact sets and Lagrange interpolation
    Jonsson, Alf
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (06) : 613 - 622
  • [30] Orlov spectra: bounds and gaps
    Matthew Ballard
    David Favero
    Ludmil Katzarkov
    Inventiones mathematicae, 2012, 189 : 359 - 430