Synthesis and Structure of Heavy Alkali Metal Pentalenides

被引:0
|
作者
Sanderson, Hugh J. [1 ]
Banerjee, Sumanta [2 ]
Kaur, Mandeep [1 ]
Kennedy, Alan R. [2 ]
Kociok-Koehn, Gabriele [3 ]
Hintermair, Ulrich [1 ,4 ]
Robertson, Stuart D. [2 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, England
[2] Univ Strathclyde, Dept Pure & Appl Chem, Glasgow G1 1XL, Scotland
[3] Univ Bath, Phys Struct Characterisat, Bath BA2 7AY, England
[4] Univ Bath, Inst Sustainabil, Bath BA2 7AY, England
来源
关键词
Pentalenides; Rubidium; Caesium; Alkali Metal Coordination; COMPLEXES; CHEMISTRY; DIANION; LIGANDS; LITHIUM; CESIUM; CA; SR;
D O I
10.1002/zaac.202400039
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The solid-state structures of the first rubidium and caesium pentalenides [Rb(THF)]2[Ph4Pn] and [Cs(THF)]2[Ph4Pn] have been determined by single crystal X-ray diffraction. Both were found to be polymeric in the solid state through interactions of the cations with the phenyl substituents, in contrast to their lighter group 1 congeners which are monomeric for lithium and sodium, and THF-bridged for potassium. Both [Rb(THF)]2[Ph4Pn] and [Cs(THF)]2[Ph4Pn] displayed increased eta 8 coordination, demonstrating a shift towards higher hapticities down the group as previously predicted computationally for the parent M2[Pn] complexes (M=group 1 metal). The solid-state structures of the polydentate donor adducts [M(DME)x]2[Ph4Pn] (M=Li, x=1; M=Na, x=2) and [M(Me6TREN)]2[Ph4Pn] (M=K, Rb, Cs) were all monomeric and displayed increased metal-carbon distances and decreased ring slippage values relative to the THF adducts. image
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Synthesis, crystal structure and characterization of alkali metal hydroxoantimonates
    Mikhaylov, Alexey A.
    Mel'nik, Elena A.
    Churakov, Andrei V.
    Novotortsev, Vladimir M.
    Howard, Judith A. K.
    Sladkevich, Sergey
    Gun, Jenny
    Bharathi, Subramanian
    Lev, Ovadia
    Prikhodchenko, Petr V.
    INORGANICA CHIMICA ACTA, 2011, 378 (01) : 24 - 29
  • [12] Selenocarboxylic acids and their alkali metal salts: Synthesis and structure
    Kato, S
    Kageyama, H
    Kawahara, Y
    Kanda, T
    PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS, 1998, 136 : 295 - 298
  • [13] Synthesis and structure of metallacrowns with varying alkali metal substitutions
    Kauffman, Abigail
    Zaleski, Curtis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [14] Synthesis and structure of alkali metal zirconium vanadate phosphates
    V. I. Pet’kov
    M. V. Sukhanov
    A. S. Shipilov
    V. S. Kurazhkovskaya
    E. Yu. Borovikova
    N. V. Sakharov
    M. M. Ermilova
    N. V. Orekhova
    Russian Journal of Inorganic Chemistry, 2013, 58 : 1015 - 1021
  • [15] Alkali metal compounds of hydroquinone: Synthesis and crystal structure
    Couhorn, U
    Dronskowski, R
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2003, 629 (04): : 647 - 652
  • [16] Theoretical Study on the Electronic Structure of Heavy Alkali-Metal Suboxides
    Tsuji, Yuta
    Hori, Mikiya
    Yoshizawa, Kazunari
    INORGANIC CHEMISTRY, 2020, 59 (02) : 1340 - 1354
  • [17] Synthesis, crystal and molecular structure of alkali metal nonaflates
    Bruedgam, Irene
    Lentz, Dieter
    Vorbrueggen, Helmut
    CRYSTENGCOMM, 2010, 12 (03): : 795 - 800
  • [18] Synthesis, structure and electrical behavior of the heavy alkali metal-arsenic alloys based graphite intercalation compounds
    Assouik, Jamal
    Hajji, Latifa
    Boukir, Abdellatif
    Herold, Claire
    Lagrange, Philippe
    SYNTHETIC METALS, 2016, 218 : 34 - 42
  • [19] Understanding and tuning the electronic structure of pentalenides
    Jenek, Niko A.
    Helbig, Andreas
    Boyt, Stuart M.
    Kaur, Mandeep
    Sanderson, Hugh J.
    Reeksting, Shaun B.
    Kociok-Koehn, Gabriele
    Helten, Holger
    Hintermair, Ulrich
    CHEMICAL SCIENCE, 2024, 15 (32) : 12765 - 12779
  • [20] Synthesis and crystal structure of new alkali metal hydrogen tellurates
    A. V. Churakov
    E. A. Ustinova
    P. V. Prikhodchenko
    T. A. Tripol’skaya
    J. A. K. Howard
    Russian Journal of Inorganic Chemistry, 2007, 52 : 1503 - 1510