A reinforcement learning-based evolutionary algorithm for the unmanned aerial vehicles maritime search and rescue path planning problem considering multiple rescue centers

被引:2
|
作者
Zhan, Haowen [1 ]
Zhang, Yue [2 ]
Huang, Jingbo [1 ]
Song, Yanjie [3 ]
Xing, Lining [4 ]
Wu, Jie [5 ]
Gao, Zengyun [6 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Peoples R China
[2] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[3] Wuyi Intelligent Mfg Inst Ind Technol, Jinhua 321017, Peoples R China
[4] Xidian Univ, Key Lab Collaborat Intelligence Syst, Xian 710071, Peoples R China
[5] Nanjing Univ, Sch Geog & Ocean Sci, Nanjing 210023, Peoples R China
[6] China Maritime Serv Ctr, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
UAV; Maritime search and rescue; Path planning; Reinforcement learning; Evolutionary algorithm; Genetic;
D O I
10.1007/s12293-024-00420-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the realm of maritime emergencies, unmanned aerial vehicles (UAVs) play a crucial role in enhancing search and rescue (SAR) operations. They help in efficiently rescuing distressed crews, strengthening maritime surveillance, and maintaining national security due to their cost-effectiveness, versatility, and effectiveness. However, the vast expanse of sea territories and the rapid changes in maritime conditions make a single SAR center insufficient for handling complex emergencies. Thus, it is vital to develop strategies for quickly deploying UAV resources from multiple SAR centers for area reconnaissance and supporting maritime rescue operations. This study introduces a graph-structured planning model for the maritime SAR path planning problem, considering multiple rescue centers (MSARPPP-MRC). It incorporates workload distribution among SAR centers and UAV operational constraints. We propose a reinforcement learning-based genetic algorithm (GA-RL) to tackle the MSARPPP-MRC problem. GA-RL uses heuristic rules to initialize the population and employs the Q-learning method to manage the progeny during each generation, including their retention, storage, or disposal. When the elite repository's capacity is reached, a decision is made on the utilization of these members to refresh the population. Additionally, adaptive crossover and perturbation strategies are applied to develop a more effective SAR scheme. Extensive testing proves that GA-RL surpasses other algorithms in optimization efficacy and efficiency, highlighting the benefits of reinforcement learning in population management.
引用
收藏
页码:373 / 386
页数:14
相关论文
共 50 条
  • [21] Path Planning of Mountain Search and Rescue Based on Ant Colony Algorithm
    Zhou, Zhihong
    2016 3RD INTERNATIONAL CONFERENCE ON ECONOMIC, BUSINESS MANAGEMENT AND EDUCATIONAL INNOVATION (EBMEI 2016), PT 2, 2016, 55 : 644 - 648
  • [22] Late acceptance hill climbing based algorithm for Unmanned Aerial Vehicles (UAV) path planning problem
    Salehi, Emad Deilam
    Fazli, Mohammadamin
    APPLIED SOFT COMPUTING, 2025, 170
  • [23] Multi-Agent Reinforcement Learning-Based Computation Offloading for Unmanned Aerial Vehicle Post-Disaster Rescue
    Wang, Lixing
    Jiao, Huirong
    SENSORS, 2024, 24 (24)
  • [24] An Effective Multi-objective Evolutionary Algorithm Based on Decomposition for A Robot Rescue Path Planning Problem
    Dai, Loulei
    Wang, Hongguo
    Pan, Quan-ke
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 2065 - 2070
  • [25] A Reinforcement Learning-Based Path Planning Considering Degree of Observability
    Cho, Yong Hyeon
    Park, Chan Gook
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 502 - 505
  • [26] Research on reinforcement learning-based safe decision-making methodology for multiple unmanned aerial vehicles
    Yue, Longfei
    Yang, Rennong
    Zhang, Ying
    Zuo, Jialiang
    FRONTIERS IN NEUROROBOTICS, 2023, 16
  • [27] Multiple Unmanned Aerial Vehicles Path Planning Based on Collaborative Differential Evolution
    Lu, Yao
    Zhang, Xiangyin
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT II, 2023, 13969 : 98 - 110
  • [28] Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
    LI Pei DUAN HaiBin Science and Technology on Aircraft Control LaboratorySchool of Automation Science and Electrical EngineeringBeihang UniversityBeijing China State Key Laboratory of Virtual Reality Technology and SystemsBeihang UniversityBeijing China
    Science China(Technological Sciences), 2012, 55 (10) : 2712 - 2719
  • [29] Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
    Li Pei
    Duan HaiBin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2012, 55 (10) : 2712 - 2719
  • [30] Path planning of unmanned aerial vehicle based on improved gravitational search algorithm
    LI Pei 1 & DUAN HaiBin 1
    2 State Key Laboratory of Virtual Reality Technology and Systems
    Science China(Technological Sciences), 2012, (10) : 2712 - 2719