Short-term air pollution prediction using graph convolutional neural networks

被引:0
|
作者
Jana, Swadesh [1 ]
Middya, Asif Iqbal [1 ]
Roy, Sarbani [1 ]
机构
[1] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata, India
关键词
Air pollution; Pollution forecasting; Deep learning; Spatio-temporal graph; Convolution networks; PARTICULATE MATTER; QUALITY; MODEL; URBAN; SYSTEM; HEALTH; AREA;
D O I
10.1016/j.techfore.2024.123684
中图分类号
F [经济];
学科分类号
02 ;
摘要
Pollution is a major concern in the present day, causing multiple illnesses and deaths, specifically in developing countries in Asia and Africa. While it has drawn worldwide attention as governments try to issue laws to meet certain criteria for air pollution levels, pollution concentration forecasting has become a major challenge. Particularly, short term forecasting will help to gain information regarding concentrations of harmful pollutants for the upcoming hours and enable better decision-making with regards to controlling air pollution. In this paper, we investigate spatio-temporal graph-based models to determine the best methods for spatial and temporal analysis of data. The models have the additional capacity to perform multi-variate predictions of correlated data, i.e., predicting multiple pollutant concentrations simultaneously, thus requiring lower computational efforts. A real-world pollution dataset measured over Delhi, India, is used to comparing the proposed models with baselines, which shows the Spatio-Temporal Graph Convolution Neural Network (STGCN) models to be performing better than others. For a better understanding of model architectures with the most effective strategies for spatial and temporal data analysis, three models, namely STGCN-A, STGCNB, STGCN-C have been developed. The models have been compared with 6 other baselines over multiple forecasting horizons of 1 h, 24 h, and 48 h timesteps using various metrics such as mean absolute error (MAE), root mean square error (RMSE), mean absolute percent error (MAPE). On the PM 2.5 dataset of Delhi, STGCN-B achieves a performance of 10.53 MAE, 6.92 RMSE and 25.25 MAPE for a 1 h forecast, while STGCN-C achieves 20.18 MAE, 14.73 RMSE and 55.45 MAPE for a 24 h forecast. In general, both structures achieve similar results, with STGCN-C being better in many cases. They are further analysed through observation-prediction graphs and Taylor diagrams, which give an insight into our findings. The models are additionally validated on a benchmark real-world dataset from California, USA for better understanding of the spatio-temporal relations and model performances on a more stable dataset, where STGCN-C performs best for PM 2.5 with 4.30 RMSE, 1.98 MAE, 25.96 MAPE for 1 h predictions for univariate data and 3.63 RMSE, 1.88 MAE and 25.91 MAPE in multivariate forecasting. The developed spatio-temporal graph-based models hold promising applications in urban air quality management, aiding policymakers in implementing targeted interventions to mitigate pollution-related health risks. Furthermore, these models can support public health agencies by providing timely and accurate forecasts of pollutant concentrations, enabling proactive measures to safeguard community well-being. Our study showcases the efficacy of spatio-temporal graph-based models in accurately forecasting air pollutant concentrations, with particular emphasis on short-term predictions. By leveraging multi-variate capabilities, our proposed models demonstrate superior performance compared to baseline approaches across various forecasting horizons.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Short-Term Passenger Flow Prediction Using a Bus Network Graph Convolutional Long Short-Term Memory Neural Network Model
    Baghbani, Asiye
    Bouguila, Nizar
    Patterson, Zachary
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (02) : 1331 - 1340
  • [12] A short-term voltage stability online prediction method based on graph convolutional networks and long short-term memory networks
    Wang, Guoteng
    Zhang, Zheren
    Bian, Zhipeng
    Xu, Zheng
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 127
  • [13] A Novel Recursive Model Based on a Convolutional Long Short-Term Memory Neural Network for Air Pollution Prediction
    Wang, Weilin
    Mao, Wenjing
    Tong, Xueli
    Xu, Gang
    REMOTE SENSING, 2021, 13 (07)
  • [14] Short-term prediction of air pollution using TD-CMAC neural network model
    Rahmani, AM
    Teshnehlab, M
    Abbaspour, M
    Setayeshi, S
    SOFT COMPUTING WITH INDUSTRIAL APPLICATIONS, VOL 17, 2004, 17 : 357 - 362
  • [15] A Short-Term Rainfall Prediction Model using Multi-Task Convolutional Neural Networks
    Qiu, Minghui
    Zhao, Peilin
    Zhang, Ke
    Huang, Jun
    Shi, Xing
    Wang, Xiaoguang
    Chu, Wei
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, : 395 - 404
  • [16] Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks
    Abbas, Zainab
    Al-Shishtawy, Ahmad
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2018 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS), 2018, : 57 - 65
  • [17] Short-Term Traffic Flow Prediction Based on Graph Convolutional Networks and Federated Learning
    Xia, Mengran
    Jin, Dawei
    Chen, Jingyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 1191 - 1203
  • [18] Short-Term Wind Power Output Prediction Based on Temporal Graph Convolutional Networks
    Ji, Xiaoqing
    Li, Zhaoxia
    Jiang, Xiaoyan
    Yang, Dechang
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 2074 - 2080
  • [19] Residential Short-Term Load Forecasting Using Convolutional Neural Networks
    Voss, Marcus
    Bender-Saebelkampf, Christian
    Albayrak, Sahin
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [20] Short-term Recognition of Human Activities using Convolutional Neural Networks
    Papakostas, Michalis
    Giannakopoulos, Theodoros
    Makedon, Fillia
    Karkaletsis, Vangelis
    2016 12TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2016, : 302 - 307