Differentially private federated learning with local momentum updates and gradients filtering

被引:0
|
作者
Zhang, Shuaishuai [1 ]
Huang, Jie [1 ,2 ]
Li, Peihao [1 ]
Liang, Chuang [1 ]
机构
[1] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
关键词
Federated learning; Differential privacy; Gaussian mechanism; Momentum updates;
D O I
10.1016/j.ins.2024.120960
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Differential Privacy (DP) is applied in Federated Learning (FL) for defending against various privacy attacks. Existing methods based on Gaussian mechanism require the operations of clipping and adding noise, leading to significant accuracy degradation. In this paper, we propose a novel FL scheme named DPFL-LMG to provide user-level DP guarantee while maintaining a high model accuracy. Our main idea is to mitigate the negative effects of the clipping on the model convergence by decreasing the L-2 norm of local updates and the cross-client update variance. Specifically, our method includes two techniques, Local Momentum Updates (LMU) and Gradients Filtering (GF). LMU combines local updates of different rounds in a momentum way. It can significantly decrease the cross-client update variance by weakening the gradient noise in local updates caused by stochastic gradient descent (SGD) algorithm. GF estimates the gradient noise in each element of local updates by observing the element-wise variance. Elements with large noise are considered unnecessary and are zeroed out for the reduction of local update norms. We theoretically analyze the privacy guarantee and the convergence of our method. Experiments demonstrate that DPFL-LMG can effectively mitigate the accuracy degradation caused by clipping and outperform previous DPFL methods in the accuracy.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Differentially Private Federated Learning via Reconfigurable Intelligent Surface
    Yang, Yuhan
    Zhou, Yong
    Wu, Youlong
    Shi, Yuanming
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20) : 19728 - 19743
  • [42] Differentially private federated learning with non-IID data
    Cheng, Shuyan
    Li, Peng
    Wang, Ruchuan
    Xu, He
    COMPUTING, 2024, 106 (07) : 2459 - 2488
  • [43] Differentially Private Federated Learning for Anomaly Detection in eHealth Networks
    Cholakoska, Ana
    Pfitzner, Bjarne
    Gjoreski, Hristijan
    Rakovic, Valentin
    Arnrich, Bert
    Kalendar, Marija
    UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2021, : 514 - 518
  • [44] Generalized genomic data sharing for differentially private federated learning
    Al Aziz, Md Momin
    Anjum, Md Monowar
    Mohammed, Noman
    Jiang, Xiaoqian
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 132
  • [45] Differentially Private Federated Learning: An Information-Theoretic Perspective
    Asoodeh, Shahab
    Chen, Wei-Ning
    Calmon, Flavio P.
    Ozgur, Ayfer
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 344 - 349
  • [46] FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks
    Zhang, Lefeng
    Zhu, Tianqing
    Zhang, Haibin
    Xiong, Ping
    Zhou, Wanlei
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 4732 - 4746
  • [47] Incentivizing Differentially Private Federated Learning: A Multidimensional Contract Approach
    Wu, Maoqiang
    Ye, Dongdong
    Ding, Jiahao
    Guo, Yuanxiong
    Yu, Rong
    Pan, Miao
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10639 - 10651
  • [48] Differentially Private federated learning to Protect Identity in Stress Recognition
    Guelta, Bouchiba
    Benbakreti, Samir
    Boumediene, Kadda
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (06): : 36 - 41
  • [49] The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning
    Chen, Wei-Ning
    Choquette-Choo, Christopher A.
    Kairouz, Peter
    Suresh, Ananda Theertha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [50] Differentially Private Filtering
    Le Ny, Jerome
    Pappas, George J.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 3398 - 3403