Quantum Hall resistance standards based on epitaxial graphene with p-type conductivity

被引:0
|
作者
Yin, Yefei [1 ]
Kruskopf, Mattias [1 ]
Bauer, Stephan [1 ]
Tschirner, Teresa [1 ]
Pierz, Klaus [1 ]
Hohls, Frank [1 ]
Haug, Rolf J. [2 ]
Schumacher, Hans W. [1 ]
机构
[1] Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
[2] Leibniz Univ Hannover, Inst Festkorperphys, D-30167 Hannover, Germany
关键词
Cell proliferation - Charge transfer - Quantum Hall effect;
D O I
10.1063/5.0223723
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the last decade, quantum resistance metrology has benefited from the application of graphene as the base material for the fabrication of quantum Hall (QH) resistance standards since it allows for the realization of the resistance unit ohm in the revised International System of Units under relaxed experimental conditions. Here, we present a detailed magnetotransport investigation of p-type epitaxial graphene, which was doped by the molecular acceptor F4-TCNQ. High-accuracy measurements of the QH resistance show an excellent quantization and a reproduction of the nominal value, the half of the von Klitzing constant R-K/2, within 2 n ohm/ohm. It underlines the universality of the QH effect and shows that p-type epitaxial graphene can also serve as the basis for future resistance standards for operation at relaxed experimental conditions. For the p-type devices, the onset of the QH plateau is observed at about 1 T higher magnetic fields, which can be attributed to an additional disorder or a non-symmetric charge transfer mechanism in the QH regime.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Theory for optical Hall conductivity in the trilayer graphene in the quantum Hall regime
    Morimoto, Takahiro
    Koshino, Mikito
    Aoki, Hideo
    20TH INTERNATIONAL CONFERENCE ON THE APPLICATION OF HIGH MAGNETIC FIELDS IN SEMICONDUCTOR PHYSICS (HMF-20), 2013, 456
  • [42] p-Type Epitaxial Graphene on Cubic Silicon Carbide on Silicon for Integrated Silicon Technologies
    Pradeepkumar, Aiswarya
    Amjadipour, Mojtaba
    Mishra, Neeraj
    Liu, Chang
    Fuhrer, Michael S.
    Bendavid, Avi
    Isa, Fabio
    Zielinski, Marcin
    Sirikumara, Hansika I.
    Jayasekara, Thushari
    Gaskill, D. Kurt
    Iacopi, Francesca
    ACS APPLIED NANO MATERIALS, 2020, 3 (01) : 830 - 841
  • [43] Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide
    Lafont, F.
    Ribeiro-Palau, R.
    Kazazis, D.
    Michon, A.
    Couturaud, O.
    Consejo, C.
    Chassagne, T.
    Zielinski, M.
    Portail, M.
    Jouault, B.
    Schopfer, F.
    Poirier, W.
    NATURE COMMUNICATIONS, 2015, 6
  • [44] Quantum Hall resistance standards from graphene grown by chemical vapour deposition on silicon carbide
    F. Lafont
    R. Ribeiro-Palau
    D. Kazazis
    A. Michon
    O. Couturaud
    C. Consejo
    T. Chassagne
    M. Zielinski
    M. Portail
    B. Jouault
    F. Schopfer
    W. Poirier
    Nature Communications, 6
  • [45] MAGNETOTHERMAL CONDUCTIVITY OF P-TYPE GERMANIUM
    CHALLIS, LJ
    HASELER, SC
    RAMDANE, A
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (23): : 4695 - 4706
  • [46] p-Type conductivity in the delafossite structure
    Nagarajan, R
    Duan, N
    Jayaraj, MK
    Li, J
    Vanaja, KA
    Yokochi, A
    Draeseke, A
    Tate, J
    Sleight, AW
    INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, 2001, 3 (03): : 265 - 270
  • [47] POLARIZATION CONDUCTIVITY IN P-TYPE GERMANIUM
    GOLIN, S
    PHYSICAL REVIEW, 1963, 132 (01): : 178 - &
  • [48] Magnetocapacitance and dissipation factor of epitaxial graphene-based quantum Hall effect devices
    Schurr, J.
    Kalmbach, C. -C.
    Ahlers, F. J.
    Hohls, F.
    Kruskopf, M.
    Mueller, A.
    Pierz, K.
    Bergsten, T.
    Haug, R. J.
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [49] Macromolecular systems with the p-type conductivity
    E. V. Agina
    S. A. Ponomarenko
    A. M. Muzafarov
    Russian Chemical Bulletin, 2010, 59 : 1080 - 1098
  • [50] Macromolecular systems with the p-type conductivity
    Agina, E. V.
    Ponomarenko, S. A.
    Muzafarov, A. M.
    RUSSIAN CHEMICAL BULLETIN, 2010, 59 (06) : 1080 - 1098