Lightweight Road Damage Detection Network Based on YOLOv5

被引:0
|
作者
Zhao, Jingwei [1 ]
Tao, Ye [1 ]
Zhang, Zhixian [1 ]
Huang, Chao [1 ]
Cui, Wenhua [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan, Peoples R China
关键词
Road Damage Detection; Lightweight Network; YOLOv5; CARAFE; CBAM; CLASSIFICATION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The field of computer vision has experienced rapid progress owing to deep learning. The importance of road damage detection in ensuring traffic safety and reducing road maintenance costs is becoming increasingly evident. For detecting road damage, the YOLOv5 algorithm provides a reliable and effective method. However, YOLOv5 still requires a significant amount of computation. This paper proposes a lightweight network for detecting road damage that improves upon the YOLOv5 model in four ways. The algorithm accurately identifies and classifies different types of road damage, while simultaneously reducing the number of parameters and required computations. First, lightweight processing of the model is achieved. The Ghost module and Ghost Bottleneck are employed to construct the novel GBS module and C3Ghost, which replace the existing CBS and C3 modules. Second, the CIoU loss function is transformed into SIoU to improve the precision of target box regression. Furthermore, the original upsampling module is replaced by CARAFE to improve the model's semantic adaptability and receptive field. Finally, the CBAM attention mechanism is employed to concentrate on crucial feature information. The experiment's findings present that, in comparison to the baseline model, the upgraded model has 41.8% fewer parameters. Additionally, there has been a 43.8% reduction in floating-point computation and an improvement of 0.2% in detection accuracy.
引用
收藏
页码:1708 / 1720
页数:13
相关论文
共 50 条
  • [41] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Yuan, Xinpeng
    Fu, Zhibo
    Zhang, Bowen
    Xie, Zhengkun
    Gan, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [42] Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
    Sun, Yu
    Zhang, Dongwei
    Guo, Xindong
    Yang, Hua
    PLANTS-BASEL, 2023, 12 (17):
  • [43] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Xinpeng Yuan
    Zhibo Fu
    Bowen Zhang
    Zhengkun Xie
    Rui Gan
    Scientific Reports, 14
  • [44] A Lightweight Military Target Detection Algorithm Based on Improved YOLOv5
    Du, Xiuli
    Song, Linkai
    Lv, Yana
    Qiu, Shaoming
    ELECTRONICS, 2022, 11 (20)
  • [45] Lightweight tea bud detection method based on improved YOLOv5
    Zhang, Kun
    Yuan, Bohan
    Cui, Jingying
    Liu, Yuyang
    Zhao, Long
    Zhao, Hua
    Chen, Shuangchen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [46] Lightweight detection algorithm of seed potato eyes based on YOLOv5
    Gu, Hongyu
    Li, Zhihe
    Li, Tao
    Li, Tianhao
    Li, Ning
    Wei, Zhongcai
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (14): : 126 - 136
  • [47] Pavement damage detection model based on improved YOLOv5
    He T.
    Li H.
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2024, 57 (02): : 96 - 106
  • [48] CSE-YOLOv5: A Lightweight Attention Guided YOLOv5 Network based on EIoU Loss
    Li, Yifei
    Hao, Li-Ying
    Liu, Huiying
    Zhang, Yunze
    2023 IEEE 2ND INDUSTRIAL ELECTRONICS SOCIETY ANNUAL ON-LINE CONFERENCE, ONCON, 2023,
  • [49] An improved lightweight object detection algorithm for YOLOv5
    Luo, Hao
    Wei, Jiangshu
    Wang, Yuchao
    Chen, Jinrong
    Li, Wujie
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [50] Detection of Cotton Seed Damage Based on Improved YOLOv5
    Liu, Zhicheng
    Wang, Long
    Liu, Zhiyuan
    Wang, Xufeng
    Hu, Can
    Xing, Jianfei
    PROCESSES, 2023, 11 (09)