State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions

被引:0
|
作者
Ke, Xue
Hong, Huawei [1 ]
Zheng, Peng [2 ]
Zhang, Shuling [3 ]
Zhu, Lingling [2 ]
Li, Zhicheng [3 ]
Cai, Jiaxin [4 ]
Fan, Peixiao
Yang, Jun
Wang, Jun
Li, Li [5 ,6 ]
Kuai, Chunguang [1 ]
Guo, Yuzheng [1 ,5 ,6 ,7 ]
机构
[1] Wuhan Univ, Sch Elect Engn & Automat, Wuhan 430072, Peoples R China
[2] State Grid Fujian Elect Power Co, Mkt Serv Ctr, Fuzhou 350001, Peoples R China
[3] State Grid Fujian Elect Power Co, Fuzhou 350001, Peoples R China
[4] State Grid Fujian Elect Power Co Ltd, Elect Power Res Inst, Fuzhou 350007, Peoples R China
[5] Quanzhou Power Supply Co, State Grid Fujian Elect Power Co, Fuzhou 350001, Peoples R China
[6] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[7] Wuhan Univ, Hubei Key Lab Elect Mfg & Packaging Integrat, Wuhan 430072, Peoples R China
关键词
Lithium-ion battery; State of health estimation; Relaxation voltage; Machine learning; Dynamic conditions; ENERGY-STORAGE; PREDICTION;
D O I
10.1016/j.est.2024.113506
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The data-driven approach accurately estimates the state-of-health of lithium-ion batteries using online data, aiding consumers in operational and maintenance decisions. However, the stochastic charging and discharging behavior in realistic scenarios leads to continuous transient processes that render conventional features undetectable or exacerbate fluctuations. Here, we use domain knowledge and equivalent circuit modeling to investigate the extraction of physical features of aging through a relatively stable relaxation process under dynamic conditions. Our study uses 16-cell data from the National Aeronautics and Space Administration randomized dataset and compares four basic data-driven models for validation. The results show that incorporating a limited set of previous discharge step information significantly enhances model robustness and accuracy. The bestperforming model, auto-relevance determination gaussian process regression, achieves a low root mean square error of 1.94 %. Physically interpretable features do not rely on historical data, require a smaller sample size, and exhibit greater generalizability across different current scenarios. This method does not depend on a specific charging method, making it practical and adaptable. Therefore, the data-driven approach utilizing relaxation voltages and correlation features offers a viable solution for accurately estimating the health state of lithium-ion batteries under dynamic conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Perspective on State-of-Health Determination in Lithium-Ion Batteries
    Dubarry, Matthieu
    Baure, George
    Ansean, David
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (04)
  • [32] Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase
    Du, Changqing
    Qi, Rui
    Ren, Zhong
    Xiao, Di
    ENERGIES, 2023, 16 (03)
  • [33] Ultrasound simulation technique as state-of-health estimation method of lithium-ion batteries
    Gaviria-Cardona, J. P.
    Guzman-De las Salas, Michael
    Montoya-Escobar, Nicolas
    Florez-Escobar, Whady
    Valencia-Cardona, Raul
    Vladimir Martinez, Hader
    2021 IEEE UFFC LATIN AMERICA ULTRASONICS SYMPOSIUM (LAUS), 2021,
  • [34] Dynamic Equivalent Circuit Model to Estimate State-of-Health of Lithium-Ion Batteries
    Amir, Shehla
    Gulzar, Moneeba
    Tarar, Muhammad O.
    Naqvi, Ijaz H.
    Zaffar, Nauman A.
    Pecht, Michael G.
    IEEE ACCESS, 2022, 10 : 18279 - 18288
  • [35] A fast state-of-health estimation method using single linear feature for lithium-ion batteries
    Shi, Mingjie
    Xu, Jun
    Lin, Chuanping
    Mei, Xuesong
    ENERGY, 2022, 256
  • [36] State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves
    Qian, Kun
    Huang, Binhua
    Ran, Aihua
    He, Yan-Bing
    Li, Baohua
    Kang, Feiyu
    ELECTROCHIMICA ACTA, 2019, 303 : 183 - 191
  • [37] State-of-Health Estimation of Lithium-Ion Batteries by Fusing an Open Circuit Voltage Model and Incremental Capacity Analysis
    Bian, Xiaolei
    Wei, Zhongbao Gae
    Li, Weihan
    Pou, Josep
    Sauer, Dirk Uwe
    Liu, Longcheng
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (02) : 2226 - 2236
  • [38] A Novel Model-Based Voltage Construction Method for Robust State-of-Health Estimation of Lithium-Ion Batteries
    Bian, Xiaolei
    Wei, Zhongbao
    He, Jiangtao
    Yan, Fengjun
    Liu, Longcheng
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) : 12173 - 12184
  • [39] Improving the state-of-health estimation of lithium-ion batteries based on limited labeled data
    Han, Dou
    Zhang, Yongzhi
    Ruan, Haijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [40] State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review
    Yanshuo Liu
    Licheng Wang
    Dezhi Li
    Kai Wang
    Protection and Control of Modern Power Systems, 2023, 8