Visual depiction and numerical characterization of intricate flow in triply periodic minimal surface foams

被引:0
|
作者
Li, Jiaxuan [1 ,2 ]
Yang, Yang [1 ,2 ]
Zhu, Xun [1 ,2 ]
Ye, Dingding [1 ,2 ]
Chen, Rong [1 ,2 ]
Liao, Qiang [1 ,2 ]
机构
[1] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400030, Peoples R China
[2] Chongqing Univ, Inst Engn Thermophys, Sch Energy & Power Engn, Chongqing 400030, Peoples R China
基金
中国国家自然科学基金;
关键词
OPEN-CELL FOAMS; FLUID-FLOW; MICROLATTICE; VELOCIMETRY; SPONGES; SCALE; DARCY; PIV;
D O I
10.1063/5.0215608
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Benefiting from the structural specificity and programmability, the bioinspired triply periodic minimal surfaces (TPMSs) bring excellent physicochemical properties that are distinct from conventional topologies. Especially with the rapid development of additive manufacturing and high-performance computing capacities, function-oriented design and synthesis of smart TPMS materials or devices have become feasible. Therefore, understanding the flow characterizations induced by TPMS foams is of remarkable importance to the successful design and practical operation. However, the in-depth studies and theoretical guidance on the relationship between structure and flow characterizations of TPMS foams are still limited. In this study, an Eulerian and Lagrangian coupled model is developed to investigate the internal flow behaviors and flow regime transition mechanism from creeping to inertial flow in four representative TPMS foams. The simulation accuracy is then validated by a high-resolution pore-scale flow field observation. Results show that the flow morphology and pressure drop characteristics are highly influenced by TPMS geometry and Re. Among which, Schwarz Diamond (D), Schoen Gyroid (G), and Fischer-Koch S (S) foams are more susceptible to radial flow disturbance, while Schoen inverted Weissenberg periodic foam to axial flow disturbance. In addition, higher porosities delay the transition to transitional regime of the flow. This work establishes firm theoretical and methodological foundations for the customization and intelligent development of bioinspired TPMS foam materials in broad fluidic applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Numerical simulation study on the heat transfer and flow characteristics of fuel/lubricating oil heat exchanger based on triply periodic minimal surface (TPMS)
    Song, Nanxin
    Pu, Wenhao
    Qiao, Long
    Wu, Bingwei
    Liu, Ruihang
    Luo, Fuyuan
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [42] Effective Anisotropic Elastic and Plastic Yield Properties of Periodic Foams Derived from Triply Periodic Schoen's I-WP Minimal Surface
    Abu Al-Rub, Rashid K.
    Lee, Dong-Wook
    Khan, Kamran A.
    Palazotto, Anthony N.
    JOURNAL OF ENGINEERING MECHANICS, 2020, 146 (05)
  • [43] Additive manufacturing and characterization of mathematically designed bone scaffolds based on triply periodic minimal surface lattices
    Yilmaz, Bengi
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (15) : 3492 - 3502
  • [44] Characterization of triply periodic minimal surface structures obtained using toolpath-based construction design
    Tan, Shujie
    Zhang, Xi
    Wang, Ziyu
    Ding, Liping
    Chen, Wenliang
    Zhang, Yicha
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2022, 1 (03):
  • [45] Characterization of pressure drop through Schwarz-Diamond triply periodic minimal surface porous media
    Hawken, M. B.
    Reid, S.
    Clarke, D. A.
    Watson, M.
    Fee, C. J.
    Holland, D. J.
    CHEMICAL ENGINEERING SCIENCE, 2023, 280
  • [46] Mechanical and FEA-Assisted Characterization of Fused Filament Fabricated Triply Periodic Minimal Surface Structures
    Kladovasilakis, Nikolaos
    Tsongas, Konstantinos
    Tzetzis, Dimitrios
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (02):
  • [47] Protective performance of hybrid triply periodic minimal surface lattice structure
    Zhang, Yong
    Chen, Yangang
    Li, Jixiang
    Wu, Jiacheng
    Qian, Liang
    Tan, Yuanqiang
    Li, Kunyuan
    Zeng, Guoyao
    THIN-WALLED STRUCTURES, 2024, 194
  • [48] Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices
    Al-Ketan, Oraib
    Abu Al-Rub, Rashid K.
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (10)
  • [49] Compression Behavior of Triply Periodic Minimal Surface Polymer Lattice Structures
    A. K. Mishra
    A. Kumar
    Experimental Mechanics, 2023, 63 : 609 - 620
  • [50] Design procedure for triply periodic minimal surface based biomimetic scaffolds
    Günther F.
    Wagner M.
    Pilz S.
    Gebert A.
    Zimmermann M.
    Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126