Identifying Pareto-efficient eradication strategies for invasive populations

被引:0
|
作者
Adams, Amy A. Yackel [1 ]
Hostetter, Nathan J. [2 ]
Link, William A. [3 ]
Converse, Sarah J. [4 ,5 ]
机构
[1] US Geol Survey, Ft Collins Sci Ctr, 2150 Ctr Ave,Bldg C, Ft Collins, CO 80526 USA
[2] North Carolina State Univ, US Geol Survey, Dept Appl Ecol, North Carolina Cooperat Fish & Wildlife Res Unit, Raleigh, NC USA
[3] US Geol Survey, Patuxent Wildlife Res Ctr, Laurel, MD USA
[4] Univ Washington, Washington Cooperat Fish & Wildlife Res Unit, US Geol Survey, Sch Environm & Forest Sci, Seattle, WA USA
[5] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA USA
来源
CONSERVATION LETTERS | 2024年 / 17卷 / 05期
关键词
decision analysis; invasive species management; Pareto efficiency; pest management; removal sampling; veiled chameleons; STRUCTURED DECISION-MAKING; ADAPTIVE MANAGEMENT; REMOVAL; SURVEILLANCE; SEARCH; GUIDE; PLAN;
D O I
10.1111/conl.13051
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Invasive species are a major cause of biodiversity loss and are notoriously expensive and challenging to manage. We developed a decision-analytic framework for evaluating invasive species removal strategies, given objectives of maximizing eradication probability and minimizing costs. The framework uses an existing estimation model for spatially referenced removal data-one of the most accessible types of invasive species data-to obtain estimates of population growth rate, movement probability, and detection probability. We use these estimates in simulations to identify Pareto-efficient strategies-strategies where increases in eradication probability cannot be obtained without increases in cost-from a set of proposed strategies. We applied the framework post hoc to a successful eradication of veiled chameleons (Chamaeleo calyptratus) and identified the potential for substantial improvements in efficiency. Our approach provides managers and policymakers with tools to identify cost-effective strategies for a range of invasive species using only prior knowledge or data from initial physical removals.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Selection of Pareto-efficient response plans based on financial and operational assessments
    Motzek A.
    Gonzalez-Granadillo G.
    Debar H.
    Garcia-Alfaro J.
    Möller R.
    Eurasip Journal on Information Security, 2017, 2017 (01)
  • [32] PECS: A Pareto-efficient and Envy-free Cloud Resource Scheduler
    Cao, Qing
    Si, Weisheng
    2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,
  • [33] Comparison of the voluntary contribution and Pareto-efficient mechanisms under voluntary participation
    Wakayama, Takuma
    Yamato, Takehiko
    INTERNATIONAL JOURNAL OF GAME THEORY, 2023, 52 (02) : 517 - 553
  • [34] SOSAP: A Pareto-efficient Spectrum Access Protocol for Cognitive Radio Networks
    Iellamo, Stefano
    Coupechoux, Marceau
    Khan, Zaheer
    2016 IEEE 84TH VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2016,
  • [35] Maximum Votes Pareto-Efficient Allocations via Swaps on a Social Network
    Li, Fu
    Zheng, Xiong
    Leibniz International Proceedings in Informatics, LIPIcs, 2021, 202
  • [36] Comparison of the voluntary contribution and Pareto-efficient mechanisms under voluntary participation
    Takuma Wakayama
    Takehiko Yamato
    International Journal of Game Theory, 2023, 52 : 517 - 553
  • [37] Pareto-efficient biological pest control enable high efficacy at small costs
    Lundstrom, Niklas L. P.
    Zhang, Hong
    Braennstroem, Ake
    ECOLOGICAL MODELLING, 2017, 364 : 89 - 97
  • [38] Pareto-Efficient Set of Modulation and Coding based on RGMI in Nonlinear Fiber Transmissions
    Koike-Akino, Toshiaki
    Kojima, Keisuke
    Millar, David S.
    Parsons, Kieran
    Yoshida, Tsuyoshi
    Sugihara, Takashi
    2016 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2016,
  • [39] A Pareto-Efficient Algorithm for Multiple Objective Optimization in E-Commerce Recommendation
    Lin, Xiao
    Chen, Hongjie
    Pei, Changhua
    Sun, Fei
    Xiao, Xuanji
    Sun, Hanxiao
    Zhang, Yongfeng
    Ou, Wenwu
    Jiang, Peng
    RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2019, : 20 - 28
  • [40] Achieving pareto-efficient bandwidth allocations using a non-monetary mechanism
    Riedel, Andre
    Fischer, Timo
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 1, PROCEEDINGS, 2006, : 405 - +