Nanomechanical characterization of carbon nanotube-based composite interfaces tailored by electrophoretic deposition

被引:0
|
作者
Sung, Dae Han [1 ]
Doshi, Sagar M. [2 ]
Rider, Andrew N. [5 ]
Thostenson, Erik T. [2 ,3 ,4 ]
机构
[1] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT 84322 USA
[2] Univ Delaware, Ctr Composite Mat, Newark, DE 19716 USA
[3] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[5] Def Sci & Technol, Fishermans Bend, Vic 3207, Australia
基金
美国国家科学基金会;
关键词
A; Nano-structures; A. Polymer-matrix composites (PMCs); B; Interface/interphase; B. Mechanical properties; Electrophoretic deposition; TAPPING MODE; FRACTURE-TOUGHNESS; NANOINDENTATION; INDENTATION; NANOSCALE; REGIONS; DESIGN;
D O I
10.1016/j.compositesb.2024.111741
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanotube (CNT) addition to composite materials can offer both nanoscale reinforcement and a multifunctional element due to their extraordinary mechanical, thermal and electrical properties. Electrophoretic deposition (EPD) offers a scalable processing technique to incorporate CNTs into conventional fiber-reinforced polymer composites (FRPCs), facilitating the production of unique nanoscale structures in the critical interphase region. In this study, CNTs functionalized with polyethyleneimine (CNT-PEI) were deposited onto a planar substrate via EPD followed by the infusion of epoxy matrix in order to replicate the nanocomposite interphase region present in nanomodified FRPCs. The nanocomposite films have thicknesses ranging from several hundred nanometers to a few microns to represent different fiber-matrix interphase regions found in FRPCs. The morphology and mechanical performance of CNT-PEI/epoxy nanocomposites are examined using atomic force microscopy (AFM) in both tapping and nanoindentation modes. The EPD creates a homogeneously distributed porous CNT network bridged by PEI, forming the pathway of epoxy resin infusion through interconnected pores with diameters less than 100 nm. CNT-PEI/epoxy nanocomposites exhibited significant improvements in stiffness, hardness, and creep resistance compared to constituent porous CNT-PEI films and neat epoxy. The improvement was directly related to the ability of the load bearing CNTs chemically bonded with the epoxy matrix through the grafted PEI, providing an efficient load transfer mechanism. The chemical bond between the porous CNT-PEI and epoxy also produced far greater fracture surface in nanoscale scratch tests compared to unmodified epoxy, indicating the CNT-PEI/epoxy nanocomposite is capable of distributing load and absorbing more energy prior to fracture.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [41] Bioinspired carbon nanotube-based materials
    Fan, Yi
    Hou, Yaqi
    Wang, Miao
    Zheng, Jing
    Hou, Xu
    MATERIALS ADVANCES, 2022, 3 (07): : 3070 - 3088
  • [42] Carbon nanotube-based nanoprobe electrode
    Kawano, Takeshi
    Cho, Chung Yeung
    Lin, Liwei
    2007 2ND IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2007, : 651 - +
  • [43] Carbon nanotube-based fluorescence sensors
    Li, Chun
    Shi, Gaoquan
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2014, 19 : 20 - 34
  • [44] Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition
    Chicatun, F.
    Cho, J.
    Schaab, S.
    Brusatin, G.
    Colombo, P.
    Roether, J. A.
    Boccaccini, A. R.
    ADVANCES IN APPLIED CERAMICS, 2007, 106 (04) : 186 - 195
  • [45] Carbon nanotube-based flexible electronics
    Xiang, Li
    Zhang, Heng
    Hu, Youfan
    Peng, Lian-Mao
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (29) : 7714 - 7727
  • [46] Spin in carbon nanotube-based oscillators
    Department of Mechanical and Industrial Engineering, Center for Computer-Aided Design, University of Iowa, Iowa City, IA 52242, United States
    不详
    不详
    Int. J. Nanosci., 2006, 1 (47-55):
  • [47] A carbon nanotube-based radiation sensor
    Ma, J.
    Yeow, J.T.W.
    Chow, J.C.L.
    Barnett, R.B.
    International Journal of Robotics and Automation, 2007, 22 (01): : 49 - 57
  • [48] A carbon nanotube-based pressure sensor
    Karimov, Kh S.
    Saleem, M.
    Karieva, Z. M.
    Khan, Adam
    Qasuria, T. A.
    Mateen, A.
    PHYSICA SCRIPTA, 2011, 83 (06)
  • [49] Carbon Nanotube-Based Power Diode
    Mousa, Omar F.
    Abu Qahouq, Jaber A.
    2011 IEEE 33RD INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE (INTELEC), 2011,
  • [50] Carbon nanotube-based neat fibers
    Behabtu, Natnael
    Green, Micah J.
    Pasquali, Matteo
    NANO TODAY, 2008, 3 (5-6) : 24 - 34