Exact solutions of a variable coefficient KdV equation: Power law in time-coefficients

被引:0
|
作者
Molati, Motlatsi [1 ]
机构
[1] Natl Univ Lesotho, Dept Math & Comp Sci, PO Roma 180, Maseru, Lesotho
来源
关键词
Exact solutions; Symmetry reductions; Time-dependent coefficients; KdV equation; Lie symmetry analysis;
D O I
10.1016/j.exco.2023.100126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lie symmetry analysis of a power law in-time coefficients Korteweg-de Vries (KdV) equation is performed with the aim of specifying the model parameters (powers of t). That is, the symmetries of the resulting subclasses of the underlying equation are obtained. Further, symmetry reductions and some exact solutions are obtained.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] The auxiliary equation for constructing the exact solutions of the variable coefficient combined KdV equation with forcible term
    Taogetusang
    Sirendaoerji
    Wuli Xuebao/Acta Physica Sinica, 2008, 57 (03): : 1295 - 1300
  • [22] The auxiliary equation for constructing the exact solutions of the variable coefficient combined KdV equation with forcible term
    Taogetusang
    Sirendaoerji
    ACTA PHYSICA SINICA, 2008, 57 (03) : 1295 - 1300
  • [23] Exact Solutions of the KdV Equation with Dual-Power Law Nonlinearity
    Fibay Urbain
    N. A. Kudryashov
    E. Tala-Tebue
    Malwe Boudoue Hubert
    S. Y. Doka
    Kofane Timoleon Crepin
    Computational Mathematics and Mathematical Physics, 2021, 61 : 431 - 435
  • [24] Exact Solutions of the KdV Equation with Dual-Power Law Nonlinearity
    Urbain, Fibay
    Kudryashov, N. A.
    Tala-Tebue, E.
    Hubert, Malwe Boudoue
    Doka, S. Y.
    Crepin, Kofane Timoleon
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (03) : 431 - 435
  • [25] Abundant exact solutions of higher-order dispersion variable coefficient KdV equation
    Zhao, Zhen
    Pang, Jing
    OPEN PHYSICS, 2022, 20 (01): : 963 - 976
  • [26] New exact solutions of the (2+1)-dimensional KdV equation with variable coefficients
    Shen, SF
    Zhang, J
    Ye, C
    Pan, ZL
    PHYSICS LETTERS A, 2005, 337 (1-2) : 101 - 106
  • [27] New exact solutions for a generalized variable coefficients 2D KdV equation
    Elwakil, SA
    El-Labany, SK
    Zahran, MA
    Sabry, R
    CHAOS SOLITONS & FRACTALS, 2004, 19 (05) : 1083 - 1086
  • [28] Exact solutions of a KdV equation with variable coefficients via Exp-function method
    Zhang, Sheng
    NONLINEAR DYNAMICS, 2008, 52 (1-2) : 11 - 17
  • [29] New type infinite sequence exact solutions of the second KdV equation with variable coefficients
    Taogetusang
    Bai Yu-Mei
    ACTA PHYSICA SINICA, 2012, 61 (06)
  • [30] Exact solutions of a KdV equation with variable coefficients via Exp-function method
    Sheng Zhang
    Nonlinear Dynamics, 2008, 52 : 11 - 17