Exact solutions of a variable coefficient KdV equation: Power law in time-coefficients

被引:0
|
作者
Molati, Motlatsi [1 ]
机构
[1] Natl Univ Lesotho, Dept Math & Comp Sci, PO Roma 180, Maseru, Lesotho
来源
关键词
Exact solutions; Symmetry reductions; Time-dependent coefficients; KdV equation; Lie symmetry analysis;
D O I
10.1016/j.exco.2023.100126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lie symmetry analysis of a power law in-time coefficients Korteweg-de Vries (KdV) equation is performed with the aim of specifying the model parameters (powers of t). That is, the symmetries of the resulting subclasses of the underlying equation are obtained. Further, symmetry reductions and some exact solutions are obtained.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] The multiple exact solutions for the variable coefficient KdV equation
    Tian, Lin
    Miao, Jia-qing
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 4474 - 4477
  • [2] Some exact solutions of KdV equation with variable coefficients
    Latif, M. S. Abdel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1783 - 1786
  • [3] Exact solutions of a KdV equation hierarchy with variable coefficients
    Zhang, Sheng
    Xu, Bo
    Zhang, Hong-Qing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (07) : 1601 - 1616
  • [4] Exact Solutions for Generalized KdV Equation with Variable Coefficients
    Wang Jinzhi
    Chen Wanji
    Xiao Shengzhong
    Mei Jianqin
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (06): : 713 - 722
  • [5] Various exact wave solutions for KdV equation with time-variable coefficients
    Ismael, Hajar F.
    Murad, Muhammad Amin S.
    Bulut, Hasan
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (05) : 409 - 418
  • [6] Exact Solutions for a Nonisospectral and Variable-Coefficient KdV Equation
    DENG Shu-Fang Institute of Mathematics
    Communications in Theoretical Physics, 2005, 43 (06) : 961 - 964
  • [7] Exact solutions for a nonisospectral and variable-coefficient KdV equation
    Deng, SF
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (06) : 961 - 964
  • [8] EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION
    Liu Xiqiang Jiang SongGraduate School
    Dept. of Math.
    AppliedMathematics:AJournalofChineseUniversities, 2001, (04) : 377 - 380
  • [9] Exact solutions for general variable-coefficient KdV equation
    Liu X.
    Jiang S.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (4) : 377 - 380
  • [10] New exact solutions for a generalized variable-coefficient KdV equation
    Sabry, R.
    El-Taibany, W. F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) : 2763 - 2770