Rational maps and K3 surfaces

被引:0
|
作者
Karzhemanov, Ilya [1 ]
Konovalov, Grisha [2 ]
机构
[1] Moscow Inst Phys & Technol, Lab AGHA, 9 Inst Skiy Per, Dolgoprudnyi 141701, Moscow, Russia
[2] HSE Univ, 6 Usacheva Str, Moscow 119048, Russia
关键词
THEOREM;
D O I
10.1007/s11856-024-2656-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a very general complex projective K3 surface S and a smooth projective surface A with trivial canonical class, we prove that there is no dominant rational map A -> S, which is not an isomorphism.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 50 条
  • [21] Singular rational curves on elliptic K3 surfaces
    Baltes, Jonas
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (07) : 2701 - 2714
  • [22] Hyperelliptic integrable systems on K3 and rational surfaces
    Takasaki, K
    PHYSICS LETTERS A, 2001, 283 (3-4) : 201 - 208
  • [23] K3 carpets on minimal rational surfaces and their smoothings
    Bangere, Purnaprajna
    Mukherjee, Jayan
    Raychaudhury, Debaditya
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (06)
  • [24] Rational equivalence and Lagrangian tori on K3 surfaces
    Sheridan, Nick
    Smith, Ivan
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (02) : 301 - 337
  • [25] Rational double points on supersingular K3 surfaces
    Shimada, I
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 1989 - 2017
  • [26] The universal Severi variety of rational curves on K3 surfaces
    Kemeny, Michael
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 159 - 174
  • [27] Monodromy of rational curves on K3 surfaces of low genus
    Zhan, Sailun
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (08)
  • [28] Rational curves on lattice-polarised K3 surfaces
    Chen, Xi
    Gounelas, Frank
    Liedtke, Christian
    ALGEBRAIC GEOMETRY, 2020, 9 (04): : 443 - 475
  • [29] Equivariant derived equivalence and rational points on K3 surfaces
    Hassett, Brendan
    Tschinkel, Yuri
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2023, 17 (02) : 293 - 312
  • [30] Wahl maps and extensions of canonical curves and K3 surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    Sernesi, Edoardo
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 761 : 219 - 245