Mechanical and rheological properties of fiber-reinforced 3D printable concrete; in terms of fiber content and aspect ratio

被引:0
|
作者
Sahin, Hatice Gizem [1 ]
Akgumus, Fatih Eren [1 ]
Mardani, Ali [1 ]
机构
[1] Bursa Uludag Univ, Dept Civil Engn, Nilufer Bursa, Turkiye
关键词
3D printable concrete; anisotropy; mechanical properties and dimensional stability; polypropylene fiber; thixotropic behavior; HARDENED PROPERTIES; FRESH; PERFORMANCE; STRENGTH; BEHAVIOR; DESIGN;
D O I
10.1002/suco.202400030
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The aim of this study is to improve the mechanical and dimensional stability properties of 3D printable concrete by using fibers. Ten mixtures containing polypropylene fiber in three different lengths (3, 6, and 12 mm) and ratios (0.2%, 0.4%, and 0.6%) were prepared. Rheological properties, compressive strength, three-point flexural strength, and drying-shrinkage performance of 3D printable concrete mixtures were examined in this study. Strength properties were determined by perpendicular and lateral loading. Thixotropic properties of the mixtures were determined using three different approaches (structural build-up development, hysteresis area and dynamic structural build-up). The dynamic yield stress value increased with fiber addition up to 0.4% of the total volume. It was determined that this value decreases with the use of fiber above this rate. In terms of mechanical and dimensional stability properties of 3D printable concrete, the optimum fiber length and utilization ratio were 6 mm and 0.4%, respectively. This parameters were adversely affected when fiber utilization ratio was 0.6% and length was 12 mm. Also, there is a strong correlation between structural build-up development and dynamic structural build-up.<br />
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Research Progress on 3D Printable Fiber Reinforced Concrete
    Ye, Junhong
    Zheng, Yi
    Yu, Jiangtao
    Yu, Kequan
    Dong, Fangyuan
    Xiao, Jianzhuang
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (11): : 2538 - 2548
  • [2] Mechanical Properties of PVC Fiber-Reinforced Concrete-Effects of Fiber Content and Length
    Islam, Tarikul
    Safiuddin, Md.
    Roman, Rezwan Ahmed
    Chakma, Bodhijit
    Al Maroof, Abdullah
    BUILDINGS, 2023, 13 (10)
  • [3] Study on Mechanical Properties of Fiber-reinforced Concrete
    Zhang J.
    Han K.
    Wang M.
    Cheng J.
    Wu R.
    Journal of Engineering Science and Technology Review, 2023, 16 (06) : 44 - 53
  • [4] Mechanical properties of steel fiber-reinforced concrete
    Thomas, Job
    Ramaswamy, Ananth
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2007, 19 (05) : 385 - 392
  • [5] Dynamic mechanical properties of fiber-reinforced concrete: A review
    Wu, Hansong
    Shen, Aiqin
    Ren, Guiping
    Ma, Qiang
    Wang, Zhe
    Cheng, Qianqian
    Li, Yue
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 366
  • [6] Mechanical Properties of Fiber-Reinforced Permeable Geopolymer Concrete
    Xu, Lina
    Liu, Qilong
    Ding, Xu
    Sun, Shuang
    Huang, Zhanfang
    MATERIALS, 2023, 16 (17)
  • [7] Mechanical properties of coconut fiber-reinforced coral concrete
    Liu, Cunpeng
    De'nan, Fatimah
    Mo, Qian
    Xiao, Yi
    Wang, Yanwen
    STRUCTURAL ENGINEERING AND MECHANICS, 2024, 90 (02) : 107 - 116
  • [8] Mechanical properties of polypropylene hybrid fiber-reinforced concrete
    Hsie, Machine
    Tu, Chijen
    Song, P. S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 494 (1-2): : 153 - 157
  • [9] Mechanical properties of fiber-reinforced concrete with adapted rheology
    Kassimi, Fodhil
    Khayat, Kamal H.
    CEMENT & CONCRETE COMPOSITES, 2021, 118
  • [10] An Investigation of Mechanical Properties of Jute Fiber-Reinforced Concrete
    Kim, J.
    Park, C.
    Choi, Y.
    Lee, H.
    Song, G.
    HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES 6, 2012, 2 : 75 - +