The manufacturing and characterization of pentamidine-loaded poly (lactic-co-glycolic acid) nanoparticles produced by microfluidic method

被引:0
|
作者
Arduino, Ilaria [1 ]
Andreana, Ilaria [2 ]
Sommonte, Federica [1 ]
Iacobazzi, Rosa Maria [1 ]
Denora, Nunzio [1 ]
Stella, Barbara [2 ]
Arpicco, Silvia [2 ]
Lopedota, Angela Assunta [1 ]
机构
[1] Univ Bari Aldo Moro, Dept Pharm Pharmaceut Sci, I-70125 Bari, Italy
[2] Univ Turin, Dept Drug Sci & Technol, Turin, Italy
关键词
Microfluidics; Emerging technologies; PLGA nanoparticles; Pentamidine; Drug delivery systems; NANOPRECIPITATION; NUCLEATION; DELIVERY;
D O I
10.1016/j.jddst.2024.106063
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In recent years, special attention has been paid to the study of manufacturing processes that can precisely control the physicochemical properties of nanoparticles (NPs) and reduce batch-to-batch variability. Microfluidics has recently emerged as an advanced production method that can manage NP properties by monitoring the diffusion/emulsification mechanism. Pentamidine free base (PTM-B), a diamidine compound positively charged at physiological pH, has already been used as a model drug for incorporation into poly(lactic-co-glycolic co-glycolic acid) (PLGA) via an ion-pairing strategy using a conventional bulk production method. The same formulation was chosen to study the scaling-up process and preparation using the microfluidic technique. The formulation of PLGA NP loaded with PTM-B by the microfluidic technique was optimized by adding 1 % Lutrol F68 as a surfactant agent to stabilize the nanosuspension during the solvent diffusion in the microchannel of the chip, and then, washed away in the final suspension. A thorough investigation of process parameters (i.e., i.e ., total flow rate, flow rate ratio) was conducted to obtain a monodisperse suspension characterized by a mean diameter of less than 150 nm. In addition, in vitro studies on mammalian cancer cell lines demonstrated the potential antitumor activity of PTM-B-loaded NPs prepared by the microfluidic technique.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Chitosan-Coated Poly(lactic-co-glycolic acid) Nanoparticles Loaded with Ursolic Acid for Breast Cancer Therapy
    Payomhom, Pattaree
    Panyain, Nattawadee
    Sakonsinsiri, Chadamas
    Wongtrakoongate, Patompon
    Lertsuwan, Kornkamon
    Pissuwan, Dakrong
    Katewongsa, Kanlaya Prapainop
    ACS APPLIED NANO MATERIALS, 2024, 7 (05) : 5383 - 5395
  • [32] Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives
    Pandita, Deepti
    Kumar, Sandeep
    Lather, Viney
    DRUG DISCOVERY TODAY, 2015, 20 (01) : 95 - 104
  • [33] Poly(lactic-co-glycolic acid) encapsulated platinum nanoparticles for cancer treatment
    Ruiz, Aida Lopez
    Arribas, Evaristo Villaseco
    McEnnis, Kathleen
    MATERIALS ADVANCES, 2022, 3 (06): : 2858 - 2870
  • [34] Enhanced sucrose-mediated cryoprotection of siRNA-loaded poly (lactic-co-glycolic acid) nanoparticles
    Youm, Ibrahima
    West, Matthew B.
    Huang, Xiangping
    Li, Wei
    Kopke, Richard D.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 220
  • [35] Comparative Receptor Based Brain Delivery of Tramadol-Loaded Poly(lactic-co-glycolic acid) Nanoparticles
    Lalani, Jigar
    Raichandani, Yogesh
    Mathur, Rashi
    Lalan, Manisha
    Chutani, Krishna
    Mishra, Anil Kumar
    Misra, Ambikanandan
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2012, 8 (06) : 918 - 927
  • [36] Poly(lactic-co-glycolic acid) as a particulate emulsifier
    Whitby, Catherine P.
    Lim, Li Hui
    Eskandar, Nasrin Ghouchi
    Simovic, Spomenka
    Prestidge, Clive A.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 375 : 142 - 147
  • [37] DEVELOPMENT AND EVALUATION OF MOXIFLOXACIN HYDROCHLORIDE LOADED POLY LACTIC-CO-GLYCOLIC ACID NANOPARTICLES FOR OCULAR DRUG DELIVERY
    Harshal, Mahajan D.
    Rajendra, Wagh D.
    Dheeraj, Baviskar T.
    Hitendra, Mahajan S.
    Bhushan, Mali J.
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2020, 11 (11): : 5685 - 5693
  • [38] Pioglitazone Loaded Poly(Lactic-Co-Glycolic Acid) Nanoparticles-Surface Coated by Chitosan to Improve Kinetics
    Dhanalekshmi, U. M.
    SelvaSudha, N.
    Poovi, G.
    Neelakantareddy, P.
    JOURNAL OF CHITIN AND CHITOSAN SCIENCE, 2013, 1 (02) : 124 - 137
  • [39] Curcumin-loaded poly lactic-co-glycolic acid nanoparticles effects on monoiodoacetate -induced osteoarthritis in rats
    Niazvand, Firoozeh
    Khorsandi, Layasadat
    Abbaspour, Mohammadreza
    Orazizadeh, Mahmoud
    Varaa, Negar
    Maghzi, Mahtab
    Ahmadi, Kheironesa
    VETERINARY RESEARCH FORUM, 2017, 8 (02) : 155 - 161
  • [40] Pyraclostrobin-loaded poly (lactic-co-glycolic acid) nanospheres: Preparation and characteristics
    Yin Ming-ming
    Zheng Yu
    Chen Fu-liang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (08) : 1822 - 1832