机构:
Capital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R ChinaCapital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
Bai, Chenyan
[1
]
Li, Jia
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R ChinaCapital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
Li, Jia
[2
]
Wang, Jinbiao
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R ChinaCapital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
Wang, Jinbiao
[1
]
机构:
[1] Capital Normal Univ, Coll Informat Engn, Beijing 100048, Peoples R China
[2] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
Bayer CFA;
demosaicking;
dual-domain fusion;
frequency domain;
spatial domain;
D O I:
10.1109/LSP.2024.3449856
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Deep learning-based demosaicking for the Bayer color filter array (CFA) has great advances. However, most existing demosaicking methods only work in the spatial domain and rarely explore the spectral characteristic of Bayer CFA. In this letter, we first attempt to address Bayer demosaicking in both spatial and frequency domains and propose a spatial-frequency fusion network. It consists of three key modules: spatial-domain branch, frequency-domain branch, and dual-domain fusion. Spatial-domain branch employs the standard convolution to extract local features in the spatial domain, while frequency-domain branch adopts frequency selection to maintain CFA's periodicity and achieve the image-wide receptive field for obtaining global features. Dual-domain fusion integrates the complementary representation of the two types of features. Extensive experiments validate the effectiveness of the proposed network.
机构:
Southwest Petr Univ, Coll Elect Engn & Informat, Chengdu 610500, Peoples R ChinaSouthwest Petr Univ, Coll Elect Engn & Informat, Chengdu 610500, Peoples R China
Wang, Min
Zhao, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Petr Univ, Coll Elect Engn & Informat, Chengdu 610500, Peoples R ChinaSouthwest Petr Univ, Coll Elect Engn & Informat, Chengdu 610500, Peoples R China
Zhao, Peng
Lu, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Fengcheng Operat Area Xinjiang Oilfield Co, Karamay 834000, Xinjiang, Peoples R ChinaSouthwest Petr Univ, Coll Elect Engn & Informat, Chengdu 610500, Peoples R China
Lu, Xin
Min, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Petr Univ, Sch Comp Sci, Chengdu 610500, Peoples R ChinaSouthwest Petr Univ, Coll Elect Engn & Informat, Chengdu 610500, Peoples R China
Min, Fan
Wang, Xizhao
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Inst Big Data, Shenzhen 518060, Peoples R ChinaSouthwest Petr Univ, Coll Elect Engn & Informat, Chengdu 610500, Peoples R China