Injection moulded specimens were produced from biodegradable poly(butylene succinate) (PBS)/organomodified montmorillonite (OMMT) nanocomposites, after melt compounding in different compositions. WAXD studies demonstrated that the OMMT formed similar intercalation levels in the 2.5-10 w/w % additive ratio range. It was also proved by rotational rheometry that the nanoclay stacks form physical network above 5 w/w% concentration, which significantly influence the viscoelastic properties of the melt. The value of zero shear viscosity also changed accordingly, starting to increase above 5 w/w% nanoclay content. The OMMT content reduced the creep sensitivity measured in molten state. X-ray and DSC investigations showed that OMMT inhibits the crystallisation of PBS, resulting in a decrease in crystallinity at higher nanoclay ratios. As a result, the room temperature creep increased with the OMMT ratio. The Young's modulus linearly increases in the entire concentration range exceeding 1.2 GPa at 10 w/w % nanoclay content. The value of yield strength does not change significantly (35-40 MPa), but the strain at yield - which characterises stiffness - and the notched Izod impact strength already decrease at 2.5 w/w% OMMT content, but further increasing the nanoclay content has minor effect. However, the nanocomposite with 10 w/w% OMMT can be a real alternative to polypropylene (PP) and high-density polyethylene (HDPE) injection moulded products based on its mechanical properties. To characterise the effect of OMMT on dynamic mechanical properties, the S (Stiffening effectiveness), L (Loss effectiveness) and D (Damping effectiveness) indices were introduced to quantitatively describe the nanoclay effect intensity in each temperature range. (c) 2023 Kingfa Scientific and Technological Co. Ltd. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).