Mapping smallholder maize farm distribution using multi-temporal Sentinel-1 data integrated with Sentinel-2, DEM and CHIRPS precipitation data in Google Earth Engine

被引:0
|
作者
de Villiers, Colette [1 ,2 ]
Munghemezulu, Cilence [2 ,3 ]
Tesfamichael, Solomon G. [3 ]
Mashaba-Munghemezulu, Zinhle [2 ]
Chirima, George J. [1 ,2 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
[2] Agr Res Council Inst Soil Climate & Water ARC ISCW, Geoinformat Sci Div, Pretoria, South Africa
[3] Univ Johannesburg, Geog Environm Management Energy Studies, Johannesburg, South Africa
来源
SOUTH AFRICAN JOURNAL OF GEOMATICS | 2024年 / 13卷 / 02期
关键词
remote sensing; synthetic aperture radar; optical satellite; normalized difference vegetation index; random forest; crop classification; BIG DATA APPLICATIONS; ETHIOPIA; YIELD; AREA;
D O I
10.4314/sajg.v13i2.7
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Mapping smallholder maize farms in complex and uneven rural terrain is a major barrier to accurately documenting the spatial representation of the farming units. Remote sensing technologies rely on various satellite products for differentiating maize cropland cover from other land cover types. The potential for multi-temporal Sentinel-1 synthetic aperture radar (SAR), Sentinel-2, digital elevation model (DEM) and precipitation data obtained from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) version 2.0 was investigated for mapping maize crop distributions during the growing seasons, 2015-2021, in the Sekhukhune municipal area of Limpopo, a province in South Africa. Sentinel-1 variables, including monthly VH, VV, VV+VH (V = vertical, H = horizontal) polarization band data and data issuing from the principal component analysis of VH polarization were integrated with Sentinel-2-derived normalized difference vegetation index (NDVI), DEM terrain, and precipitation data. The random forest (RF) algorithm was applied to distinguish maize crops from four other land cover types, including bare soil, natural vegetation, built-up area, and water. The findings indicated that the models that used only Sentinel-1 data as input data had overall accuracies below 71%. The best performing models producing overall accuracies above 83% for 2015-2021 were those where Sentinel-1 (VV+VH) data were integrated with all the ancillary data. Overall, the McNemar test indicated enhanced performance for models where all other ancillary input data had been incorporated. The results of our study show considerable temporal variation in maize area estimates, with 59 240.84 ha in the 2018/2019 growing season compared to 18 462.51 ha in the 2020/2021 growing season. The spatial information gathered through these models proved to be valuable and is essential for addressing food security, one of the objectives of the Sustainable Development Goals.
引用
收藏
页码:321 / 351
页数:31
相关论文
共 50 条
  • [21] Mapping Maize Area in Heterogeneous Agricultural Landscape with Multi-Temporal Sentinel-1 and Sentinel-2 Images Based on Random Forest
    Chen, Yansi
    Hou, Jinliang
    Huang, Chunlin
    Zhang, Ying
    Li, Xianghua
    REMOTE SENSING, 2021, 13 (15)
  • [22] Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine
    Ghorbanian, Arsalan
    Zaghian, Soheil
    Asiyabi, Reza Mohammadi
    Amani, Meisam
    Mohammadzadeh, Ali
    Jamali, Sadegh
    REMOTE SENSING, 2021, 13 (13)
  • [23] Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data
    Tomppo, Erkki
    Antropov, Oleg
    Praks, Jaan
    REMOTE SENSING, 2019, 11 (04)
  • [24] Multi-temporal analysis of forest canopy cover in Ngel Nyaki Forest Reserve using the Sentinel-1 and Sentinel-2 data
    Abdulrahaman, Ahmed Onimisi
    Chapman, Hazel
    Tariq, Aqil
    Elias, Peter
    Areh, Moses Olorunfemi
    Abdullah, Zuliehat Ohunene
    Soufan, Walid
    AFRICAN GEOGRAPHICAL REVIEW, 2024,
  • [25] Spruce budworm tree host species distribution and abundance mapping using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery
    Bhattarai, Rajeev
    Rahimzadeh-Bajgiran, Parinaz
    Weiskittel, Aaron
    Meneghini, Aaron
    MacLean, David A.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 28 - 40
  • [26] PlanetScope, Sentinel-2, and Sentinel-1 Data Integration for Object-Based Land Cover Classification in Google Earth Engine
    Vizzari, Marco
    REMOTE SENSING, 2022, 14 (11)
  • [27] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    Chong, Luo
    Huan-jun, Liu
    Lu-ping, Lu
    Zheng-rong, Liu
    Fan-chang, Kong
    Xin-le, Zhang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (07) : 1944 - 1957
  • [28] Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine
    LUO Chong
    LIU Huan-jun
    LU Lü-ping
    LIU Zheng-rong
    KONG Fan-chang
    ZHANG Xin-le
    JournalofIntegrativeAgriculture, 2021, 20 (07) : 1944 - 1957
  • [29] Semi-automated mangrove mapping at National-Scale using Sentinel-2, Sentinel-1, and SRTM data with Google Earth Engine: A case study in Thailand
    Pinkeaw, Surachet
    Boonrat, Pawita
    Koedsin, Werapong
    Huete, Alfredo
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2024, 27 (03): : 555 - 564
  • [30] Mapping Paddy Fields in Japan by Using a Sentinel-1 SAR Time Series Supplemented by Sentinel-2 Images on Google Earth Engine
    Inoue, Shimpei
    Ito, Akihiko
    Yonezawa, Chinatsu
    REMOTE SENSING, 2020, 12 (10)