EXTREMAL GRAPHS FOR DEGREE SUMS AND DOMINATING CYCLES

被引:0
|
作者
Chen, Lu [1 ]
Wu, Yueyu [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Nanjing 210023, Peoples R China
关键词
extremal graph; degree sums; longest cycle; dominating cycle;
D O I
10.1017/S0004972724000522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cycle C of a graph G is dominating if $V(C)$ is a dominating set and $V(G)\backslash V(C)$ is an independent set. Wu et al. ['Degree sums and dominating cycles', Discrete Mathematics 344 (2021), Article no. 112224] proved that every longest cycle of a k-connected graph G on $n\geq 3$ vertices with $k\geq 2$ is dominating if the degree sum is more than $(k+1)(n+1)/3$ for any $k+1$ pairwise nonadjacent vertices. They also showed that this bound is sharp. In this paper, we show that the extremal graphs G for this condition satisfy $(n-2)/3K_1\vee (n+1)/3K_2 \subseteq G \subseteq K_{(n-2)/3}\vee (n+1)/3K_2$ or $2K_1\vee 3K_{(n-2)/3}\subseteq G \subseteq K_2\vee 3K_{(n-2)/3}.$
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Hamilton Paths in Dominating Graphs of Trees and Cycles
    Kira Adaricheva
    Heather Smith Blake
    Chassidy Bozeman
    Nancy E. Clarke
    Ruth Haas
    Margaret-Ellen Messinger
    Karen Seyffarth
    [J]. Graphs and Combinatorics, 2022, 38
  • [42] DOMINATING CYCLES IN SERIES-PARALLEL GRAPHS
    COLBOURN, CJ
    STEWART, LK
    [J]. ARS COMBINATORIA, 1985, 19A (MAY) : 107 - 112
  • [43] DOMINATING CYCLES IN BIPARTITE BICLAW FREE GRAPHS
    BARRAEZ, D
    FLANDRIN, E
    LI, H
    ORDAZ, O
    [J]. DISCRETE MATHEMATICS, 1995, 146 (1-3) : 11 - 18
  • [44] Heavy cycles in 2-connected weighted graphs with large weighted degree sums
    Chen, Bing
    Zhang, Shenggui
    Cheng, T. C. Edwin
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 338 - +
  • [45] Hamilton Paths in Dominating Graphs of Trees and Cycles
    Adaricheva, Kira
    Blake, Heather Smith
    Bozeman, Chassidy
    Clarke, Nancy E.
    Haas, Ruth
    Messinger, Margaret-Ellen
    Seyffarth, Karen
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [46] Degree sum and connectivity conditions for dominating cycles
    Yamashita, Tomoki
    [J]. DISCRETE MATHEMATICS, 2008, 308 (09) : 1620 - 1627
  • [47] An extremal problem on degree sequences of graphs
    Linial, N
    Rozenman, E
    [J]. GRAPHS AND COMBINATORICS, 2002, 18 (03) : 573 - 582
  • [48] Extremal size in graphs with bounded degree
    Balinska, Krystyna T.
    Quintas, Louis V.
    Zwierzynski, Krzysztof T.
    [J]. ARS COMBINATORIA, 2006, 81 : 235 - 246
  • [49] Extremal Degree Distance Of Bicyclic Graphs
    Chen, Shubo
    Liu, Weijun
    Xia, Fangli
    [J]. UTILITAS MATHEMATICA, 2013, 90 : 149 - 169
  • [50] An Extremal Problem on Degree Sequences of Graphs
    Nathan Linial
    Eyal Rozenman
    [J]. Graphs and Combinatorics, 2002, 18 : 573 - 582