Inter-model sets in Rd are model sets

被引:0
|
作者
Richard, Christoph [1 ]
Strungaru, Nicolae [2 ,3 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] MacEwan Univ, Dept Math Sci, 10700-104 Ave, Edmonton, AB T5J 4S2, Canada
[3] Inst Math Simon Stoilow, Bucharest, Romania
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2024年 / 35卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
Model sets; Substitution point sets; Torus parametrisation; DYNAMICAL-SYSTEMS; POINT SPECTRUM;
D O I
10.1016/j.indag.2023.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any union of finitely many shifted model sets from a given cut-and-project scheme is a model set in some modified cut-and-project scheme. Restricting to direct space R-d, we show that any inter-model set is a model set in some modified cut-and-project scheme with second countable internal space. In both cases, the window in the modified cut-and-project scheme inherits the topological and measure-theoretic properties of the original windows. (c) 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:865 / 889
页数:25
相关论文
共 50 条
  • [21] Penrose tilings as model sets
    Shutov, A. V.
    Maleev, A. V.
    [J]. CRYSTALLOGRAPHY REPORTS, 2015, 60 (06) : 797 - 804
  • [22] Uniform distribution in model sets
    Moody, RV
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (01): : 123 - 130
  • [23] THE BOOLEAN MODEL AND RANDOM SETS
    SERRA, J
    [J]. COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 12 (02): : 99 - 126
  • [24] On Arithmetic Progressions in Model Sets
    Klick, Anna
    Strungaru, Nicolae
    Tcaciuc, Adi
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (03) : 930 - 946
  • [25] On Sampling and Interpolation by Model Sets
    Richard, Christoph
    Schumacher, Christoph
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (03)
  • [26] Adversarial Robustness of Model Sets
    Megyeri, Istvan
    Hegedus, Istvan
    Jelasity, Mark
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [27] Reduction of model sets with inclusion
    Jikuya, I
    Kimura, H
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2201 - 2206
  • [28] Gabor Frames for Model Sets
    Matusiak, Ewa
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) : 2570 - 2607
  • [29] On Arithmetic Progressions in Model Sets
    Anna Klick
    Nicolae Strungaru
    Adi Tcaciuc
    [J]. Discrete & Computational Geometry, 2022, 67 : 930 - 946
  • [30] Penrose tilings as model sets
    A. V. Shutov
    A. V. Maleev
    [J]. Crystallography Reports, 2015, 60 : 797 - 804