Experimental investigation on the heat transfer characteristics of loop heat pipe with carbon spheres modified nickel wick

被引:0
|
作者
Ma, Zhengyuan [1 ]
Tan, Yubo [1 ]
Zhang, Zikang [1 ]
Liu, Wei [1 ]
Liu, Zhichun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Loop heat pipe; Carbon spheres modified nickel wick; Surface modification; Hydrophilic functional groups; EVAPORATOR; PERFORMANCE; TESTS;
D O I
10.1016/j.applthermaleng.2024.123956
中图分类号
O414.1 [热力学];
学科分类号
摘要
Loop heat pipe (LHP), as passive heat transfer system, is one of the methods for thermal management of electronic components. To improve the heat transfer performance of LHPs, there is a pressing need for highperformance wicks. In this study, the hydrothermal carbonization method was used to fabricate a carbon spheres modified nickel wick (CSs-Ni-Wick) based on a biporous wick. The physical characteristics of the CSs-NiWick were then analyzed experimentally. This unique CSs-Ni-Wick combined the advantages of large pores for reducing flow resistance and small pores for enhancing capillarity. Furthermore, the CSs-Ni-Wick surface exhibited a higher concentration of hydrophilic functional groups, effectively facilitating the replenishment of subcooled liquid to the vapor-liquid interface and preventing wick drying. Based on these advantages, a flat plate LHP was constructed and subjected to multiple tests in horizontal condition to evaluate the heat transfer performance of the CSs-Ni-Wick. Experimental results revealed that the LHP achieved a maximum heat load of 140 W (20 W/cm2) and a minimum thermal resistance of 0.357 degrees C/W, while maintaining the heat source temperature below 85degree celsius. Additionally, the implementation of a micro-carbonized surface increased the density of vaporization cores, facilitating faster vapor nucleation, particularly at low heat loads. This enables vapor to be transferred more quickly from the evaporator to the condenser, leading to a smooth startup in the brass LHP using methanol as the working fluid, characterized by the absence of temperature overshoot or oscillation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Experimental study on heat transfer capability of Ti64ELI capillary wick in loop heat pipe
    Sun Q.
    Chen X.
    Xie R.
    Zhang C.
    Wu Y.
    Huagong Xuebao/CIESC Journal, 2018, 69 (04): : 1391 - 1397
  • [22] Experimental investigation into heat transfer performance of micro heat pipe with fiber-composite grooved wick
    Li, Yong
    Chen, Chun-Yan
    Zeng, Zhi-Xin
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2013, 41 (07): : 45 - 49
  • [23] EXPERIMENTAL STUDIES ON HEAT TRANSFER CHARACTERISTICS OF SS304 SCREEN MESH WICK HEAT PIPE
    Chandrasekaran, Senthil Kumar
    Srinivasan, Krishnan
    THERMAL SCIENCE, 2017, 21 : S497 - S502
  • [24] Effect of pore size distribution in bidisperse wick on heat transfer in a loop heat pipe
    Lin, Fang-Chou
    Liu, Bing-Han
    Juan, Chun-Chia
    Chen, Yau-Ming
    HEAT AND MASS TRANSFER, 2011, 47 (08) : 933 - 940
  • [25] Heat transfer in loop heat pipe's wick: Effect of porous structure parameters
    Ren, Chuan
    Wu, Qing-Song
    Hu, Mao-Bin
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2007, 21 (04) : 702 - 711
  • [26] An experimental investigation on the heat transfer characteristics of closed-loop pulsating heat pipe with graphene–water nanofluid
    Trijo Tharayil
    Lazarus Godson Asirvatham
    Stephen Manova
    V. M. Vivek
    M. S. Senthil Saravanan
    J. B. Sajin
    Somchai Wongwises
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 12721 - 12737
  • [27] Effect of pore size distribution in bidisperse wick on heat transfer in a loop heat pipe
    Fang-Chou Lin
    Bing-Han Liu
    Chun-Chia Juan
    Yau-Ming Chen
    Heat and Mass Transfer, 2011, 47 : 933 - 940
  • [28] Experimental Investigation of Heat Transfer Performance of A Miniature Loop Heat Pipe with Flat Evaporator
    Zhang, Xianfeng
    Wang, Shuangfeng
    FRONTIERS OF GREEN BUILDING, MATERIALS AND CIVIL ENGINEERING, PTS 1-8, 2011, 71-78 : 3806 - 3809
  • [29] Experimental Study on Preparation and Heat Transfer of Nickel-Based Ammonia Loop Heat Pipe
    Ning, Wenjing
    Ma, Jun
    Jiang, Cheng
    Cao, Yingwen
    Guo, Chunsheng
    Zou, Yong
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (11):
  • [30] Heat transfer with flow and evaporation in loop heat pipe's wick at low or moderate heat fluxes
    Ren, Chuan
    Wu, Qing-Song
    Hu, Mao-Bin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (11-12) : 2296 - 2308