BAYESIAN JOINT MODELING OF HIGH-DIMENSIONAL DISCRETE MULTIVARIATE LONGITUDINAL DATA USING GENERALIZED LINEAR MIXED MODELS

被引:0
|
作者
Hauser, Paloma [1 ]
Tan, Xianming [1 ]
Chen, Fang [2 ]
Chen, Ronald c. [3 ]
Ibrahim, Joseph g. [1 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC 27599 USA
[2] SAS Inst Inc, Cary, NC USA
[3] Univ Kansas, Dept Radiat Oncol, Canc Ctr, Kansas City, KS USA
来源
ANNALS OF APPLIED STATISTICS | 2024年 / 18卷 / 03期
关键词
Generalized linear mixed models; high-dimensional; longitudinal data; Markov chain Monte Carlo; low-rank approximation; patient-reported outcomes; RANK REGRESSION-MODELS; SYMPTOMS; OUTCOMES;
D O I
10.1214/24-AOAS1883
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In routine cancer care, various patient- and clinician-reported symptoms are collected throughout treatment. This informs a crucial part of clinical research, particularly in studying the factors associated with symptom underascertainment. To jointly analyze such discrete, multivariate, and potentially high-dimensional repeated measures, we propose a Bayesian longitudinal generalized linear mixed model (BLGLMM). This model integrates three key methodologies: a low-rank matrix decomposition to approximate the high-dimensional regression coefficient matrix, a sparse factor model to capture the dependence among multiple outcomes, and random effects to account for the dependence among repeated responses. Posterior computation is performed using an efficient Markov chain Monte Carlo algorithm. We conduct simulations and provide an illustrative example examining the factors associated with symptom underascertainment in prostate cancer patients to demonstrate the efficacy and utility of our proposed method.
引用
收藏
页码:2326 / 2341
页数:16
相关论文
共 50 条
  • [31] Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data
    St-Pierre, Julien
    Oualkacha, Karim
    Bhatnagar, Sahir Rai
    [J]. BIOINFORMATICS, 2023, 39 (02)
  • [32] Learning High-Dimensional Generalized Linear Autoregressive Models
    Hall, Eric C.
    Raskutti, Garvesh
    Willett, Rebecca M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2401 - 2422
  • [33] Fast precision estimation in high-dimensional multivariate joint models
    Nassiri, Vahid
    Ivanova, Anna
    Molenberghs, Geert
    Verbeke, Geert
    [J]. BIOMETRICAL JOURNAL, 2017, 59 (06) : 1221 - 1231
  • [34] Stable Non-Linear Generalized Bayesian Joint Models for Survival-Longitudinal Data
    van Niekerk, Janet
    Bakka, Haakon
    Rue, Havard
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 102 - 128
  • [35] Stable Non-Linear Generalized Bayesian Joint Models for Survival-Longitudinal Data
    Janet van Niekerk
    Haakon Bakka
    Håvard Rue
    [J]. Sankhya A, 2023, 85 : 102 - 128
  • [36] Bayesian prediction of spatial count data using generalized linear mixed models
    Christensen, OF
    Waagepetersen, R
    [J]. BIOMETRICS, 2002, 58 (02) : 280 - 286
  • [37] Multivariate functional subspace classification for high-dimensional longitudinal data
    Fukuda, Tatsuya
    Matsui, Hidetoshi
    Takada, Hiroya
    Misumi, Toshihiro
    Konishi, Sadanori
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2024, 7 (01) : 1 - 16
  • [38] Multivariate generalized linear mixed models for underdispersed count data
    da Silva, Guilherme Parreira
    Laureano, Henrique Aparecido
    Petterle, Ricardo Rasmussen
    Ribeiro Jr, Paulo Justiniano
    Bonat, Wagner Hugo
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (14) : 2410 - 2427
  • [39] Bayesian model selection in linear mixed models for longitudinal data
    Ariyo, Oludare
    Quintero, Adrian
    Munoz, Johanna
    Verbeke, Geert
    Lesaffre, Emmanuel
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (05) : 890 - 913
  • [40] Pairwise fitting of mixed models for the joint modeling of multivariate longitudinal profiles
    Fieuws, S
    Verbeke, G
    [J]. BIOMETRICS, 2006, 62 (02) : 424 - 431