Imaging for the diagnosis of acute myocarditis: can artificial intelligence improve diagnostic performance?
被引:0
|
作者:
Shyam-Sundar, Vijay
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, William Harvey Res Inst, London, England
St Bartholomews Hosp, Barts Heart Ctr, London, EnglandQueen Mary Univ London, William Harvey Res Inst, London, England
Shyam-Sundar, Vijay
[1
,2
]
Harding, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, William Harvey Res Inst, London, England
St Bartholomews Hosp, Barts Heart Ctr, London, EnglandQueen Mary Univ London, William Harvey Res Inst, London, England
Harding, Daniel
[1
,2
]
Khan, Abbas
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Digital Environm Res Inst, London, England
Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, EnglandQueen Mary Univ London, William Harvey Res Inst, London, England
Khan, Abbas
[3
,4
]
Abdulkareem, Musa
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, William Harvey Res Inst, London, EnglandQueen Mary Univ London, William Harvey Res Inst, London, England
Abdulkareem, Musa
[1
]
Slabaugh, Greg
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Digital Environm Res Inst, London, England
Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, EnglandQueen Mary Univ London, William Harvey Res Inst, London, England
Slabaugh, Greg
[3
,4
]
Mohiddin, Saidi A.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, William Harvey Res Inst, London, England
St Bartholomews Hosp, Barts Heart Ctr, London, EnglandQueen Mary Univ London, William Harvey Res Inst, London, England
Mohiddin, Saidi A.
[1
,2
]
Petersen, Steffen E.
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, William Harvey Res Inst, London, England
St Bartholomews Hosp, Barts Heart Ctr, London, England
Queen Mary Univ London, Digital Environm Res Inst, London, EnglandQueen Mary Univ London, William Harvey Res Inst, London, England
Petersen, Steffen E.
[1
,2
,3
]
Aung, Nay
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, William Harvey Res Inst, London, England
St Bartholomews Hosp, Barts Heart Ctr, London, England
Queen Mary Univ London, Digital Environm Res Inst, London, EnglandQueen Mary Univ London, William Harvey Res Inst, London, England
Aung, Nay
[1
,2
,3
]
机构:
[1] Queen Mary Univ London, William Harvey Res Inst, London, England
[2] St Bartholomews Hosp, Barts Heart Ctr, London, England
[3] Queen Mary Univ London, Digital Environm Res Inst, London, England
[4] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London, England
Myocarditis is a cardiovascular disease characterised by inflammation of the heart muscle which can lead to heart failure. There is heterogeneity in the mode of presentation, underlying aetiologies, and clinical outcome with impact on a wide range of age groups which lead to diagnostic challenges. Cardiovascular magnetic resonance (CMR) is the preferred imaging modality in the diagnostic work-up of those with acute myocarditis. There is a need for systematic analytical approaches to improve diagnosis. Artificial intelligence (AI) and machine learning (ML) are increasingly used in CMR and has been shown to match human diagnostic performance in multiple disease categories. In this review article, we will describe the role of CMR in the diagnosis of acute myocarditis followed by a literature review on the applications of AI and ML to diagnose acute myocarditis. Only a few papers were identified with limitations in cases and control size and a lack of detail regarding cohort characteristics in addition to the absence of relevant cardiovascular disease controls. Furthermore, often CMR datasets did not include contemporary tissue characterisation parameters such as T1 and T2 mapping techniques, which are central to the diagnosis of acute myocarditis. Future work may include the use of explainability tools to enhance our confidence and understanding of the machine learning models with large, better characterised cohorts and clinical context improving the diagnosis of acute myocarditis.
机构:
Kansas State Univ, Coll Vet Med, Dept Clin Sci, Manhattan, KS USA
Army Med Dept, San Antonio, TX USAKansas State Univ, Coll Vet Med, Dept Clin Sci, Manhattan, KS USA
Hennessey, Erin
论文数: 引用数:
h-index:
机构:
DiFazio, Matthew
Hennessey, Ryan
论文数: 0引用数: 0
h-index: 0
机构:
Kansas State Univ, Coll Engn, Dept Comp Sci, Manhattan, KS USAKansas State Univ, Coll Vet Med, Dept Clin Sci, Manhattan, KS USA
机构:
Univ Penn, Orthopaed Surg, Philadelphia, PA USA
Univ Penn, 110 Stemmler Hall, 36th St & Hamilton Walk, Philadelphia, PA 19104 USAUniv Penn, Orthopaed Surg, Philadelphia, PA USA