Radiomics in ophthalmology: a systematic review

被引:0
|
作者
Zhang, Haiyang [1 ,2 ]
Zhang, Huijie [1 ,2 ]
Jiang, Mengda [3 ]
Li, Jiaxin [1 ,2 ]
Li, Jipeng [1 ,2 ]
Zhou, Huifang [1 ,2 ]
Song, Xuefei [1 ,2 ]
Fan, Xianqun [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Ophthalmol, Shanghai, Peoples R China
[2] Shanghai Key Lab Orbital Dis & Ocular Oncol, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Dept Radiol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiomics; Ophthalmology; Diagnostic imaging; Differential diagnosis; Treatment response; OPTIC-NERVE; SURVIVAL; CANCER;
D O I
10.1007/s00330-024-10911-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundRadiomics holds great potential in medical image analysis for various ophthalmic diseases. In recent times, there have been numerous endeavors in this area of research. This systematic review aims to provide a comprehensive assessment of the strengths and limitations of radiomics in ophthalmology.MethodConforming to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, we conducted a systematic review with a pre-registered protocol (PROSPERO: CRD42023446317). We explored the PubMed, Embase, and Cochrane databases for original studies on this topic and made a comprehensive descriptive integration. Furthermore, the included studies underwent quality assessment by the radiomics quality score (RQS).ResultsA total of 41 articles from an initial search of 227 studies were finally selected for further analysis. These articles included research across five disease categories and covered seven imaging modalities. The radiomics models demonstrated robust performance, with area under the curve (AUC) values mostly falling within 0.7-1.0. The moderate RQS (mean score: 11.17/36) indicated that most studies were retrospectively, single-center analyses without external validation.ConclusionsRadiomics holds promising utility in the field of ophthalmology, assisting diagnosis, early-stage screening, and prognostication of treatment response. Artificial intelligence algorithms significantly contribute to the construction of radiomics models in ophthalmology. This study highlights the strengths and challenges of radiomics in ophthalmology and suggests potential avenues for future improvement.Clinical relevance statementRadiomics represents a valuable approach for generating innovative imaging markers, enhancing efficiency in clinical diagnosis and treatment, and aiding decision-making in clinical contexts of many ophthalmic diseases, thereby improving overall patient prognosis.Key Points...
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Patient education in pediatric ophthalmology: a systematic review
    Frank, Tahvi
    Rosenberg, Steven
    Talsania, Sonali
    Yeager, Lauren
    [J]. JOURNAL OF AAPOS, 2022, 26 (06): : 287 - 293
  • [12] Radiomics in the evaluation of ovarian masses — a systematic review
    Pratik Adusumilli
    Nishant Ravikumar
    Geoff Hall
    Sarah Swift
    Nicolas Orsi
    Andrew Scarsbrook
    [J]. Insights into Imaging, 14
  • [13] Pancreas image mining: a systematic review of radiomics
    Abunahel, Bassam M.
    Pontre, Beau
    Kumar, Haribalan
    Petrov, Maxim S.
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (05) : 3447 - 3467
  • [14] Applications of Extended Reality in Ophthalmology: Systematic Review
    Ong, Chee Wui
    Tan, Marcus Chun Jin
    Lam, Michael
    Koh, Victor Teck Chang
    [J]. JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (08)
  • [15] A Systematic Review of Ophthalmology Education in Medical Schools
    Spencer, Sascha K. R.
    Ireland, Patrick A.
    Braden, Jorja
    Hepschke, Jenny L.
    Lin, Michael
    Zhang, Helen
    Channell, Jessie
    Razavi, Hessom
    Turner, Angus W.
    Coroneo, Minas T.
    Shulruf, Boaz
    Agar, Ashish
    [J]. OPHTHALMOLOGY, 2024, 131 (07) : 855 - 863
  • [16] Radiomics in the evaluation of ovarian masses - a systematic review
    Adusumilli, Pratik
    Ravikumar, Nishant
    Hall, Geoff
    Swift, Sarah
    Orsi, Nicolas
    Scarsbrook, Andrew
    [J]. INSIGHTS INTO IMAGING, 2023, 14 (01)
  • [17] Pancreas image mining: a systematic review of radiomics
    Bassam M. Abunahel
    Beau Pontre
    Haribalan Kumar
    Maxim S. Petrov
    [J]. European Radiology, 2021, 31 : 3447 - 3467
  • [18] GEP-NET radiomics: a systematic review and radiomics quality score assessment
    Staal, Femke C. R.
    Aalbersberg, Else A.
    van der Velden, Daphne
    Wilthagen, Erica A.
    Tesselaar, Margot E. T.
    Beets-Tan, Regina G. H.
    Maas, Monique
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (10) : 7278 - 7294
  • [19] The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment
    Aringhieri, Giacomo
    Fanni, Salvatore Claudio
    Febi, Maria
    Colligiani, Leonardo
    Cioni, Dania
    Neri, Emanuele
    [J]. DIAGNOSTICS, 2022, 12 (12)
  • [20] GEP-NET radiomics: a systematic review and radiomics quality score assessment
    Femke C. R. Staal
    Else A. Aalbersberg
    Daphne van der Velden
    Erica A. Wilthagen
    Margot E. T. Tesselaar
    Regina G. H. Beets-Tan
    Monique Maas
    [J]. European Radiology, 2022, 32 : 7278 - 7294