Oscillatory behavior of second-order nonlinear delay dynamic equations with multiple sublinear neutral terms utilizing canonical transformation

被引:1
|
作者
Affan, S. E. [4 ]
Hassan, Taher S. [1 ,2 ,3 ]
Elabbasy, E. M. [3 ]
Saied, E. A. [4 ]
Hassan, A. M. [4 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail, Saudi Arabia
[2] Int Telematic Univ Uninettuno, Sect Math, Rome, Italy
[3] Mansoura Univ, Fac Sci, Dept Math, Mansoura, Egypt
[4] Benha Univ, Fac Sci, Dept Math, Banha 13518, Kalubia, Egypt
关键词
canonical transformation; noncanonical; oscillation; sublinear neutral terms; DIFFERENTIAL-EQUATIONS; CRITERIA;
D O I
10.1002/mma.10397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to present innovative criteria for characterizing the oscillatory behavior of second-order nonlinear delay dynamics expressed in noncanonical form with sublinear neutral terms. We achieve this by converting the noncanonical equation into an equivalent canonical form. The practical examples presented throughout this paper illustrate the significance of our findings and contribute to enhancing, generalizing, and augmenting the existing literature on this subject.
引用
收藏
页码:1589 / 1600
页数:12
相关论文
共 50 条
  • [31] New Conditions for the Oscillation of Second-Order Differential Equations with Sublinear Neutral Terms
    Santra, Shyam Sundar
    Bazighifan, Omar
    Postolache, Mihai
    MATHEMATICS, 2021, 9 (11)
  • [32] Nonlinear neutral differential equations of second-order: Oscillatory properties
    Alkilayh, Maged
    AIMS MATHEMATICS, 2025, 10 (01): : 1589 - 1601
  • [33] Oscillation criteria for second-order nonlinear delay dynamic equations of neutral type
    Zhang, Ming
    Chen, Wei
    El-Sheikh, M. M. A.
    Sallam, R. A.
    Hassan, A. M.
    Li, Tongxing
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [34] Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations
    Wu, Hong-Wu
    Zhuang, Rong-Kun
    Mathsen, Ronald M.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 321 - 331
  • [35] Oscillation criteria for second-order nonlinear delay dynamic equations of neutral type
    Ming Zhang
    Wei Chen
    MMA El-Sheikh
    RA Sallam
    AM Hassan
    Tongxing Li
    Advances in Difference Equations, 2018
  • [36] Oscillation of second-order nonlinear neutral delay dynamic equations on time scales
    Saker, SH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 187 (02) : 123 - 141
  • [37] Second-Order Non-Canonical Neutral Differential Equations with Mixed Type: Oscillatory Behavior
    Moaaz, Osama
    Nabih, Amany
    Alotaibi, Hammad
    Hamed, Y. S.
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 10
  • [38] Multiple periodic solutions for a class of second-order nonlinear neutral delay equations
    Shu, Xiao-Bao
    Xu, Yuan-Tong
    ABSTRACT AND APPLIED ANALYSIS, 2006, : 1 - 9
  • [39] Oscillatory properties of second-order nonlinear neutral dynamic equations with positive and negative coefficients
    Chen D.-X.
    Chen, D.-X. (cdx2003@163.com), 2013, Springer Verlag (42) : 227 - 243
  • [40] Oscillatory behavior of second-order nonlinear neutral differential equations with distributed deviating arguments
    Li, Tongxing
    Baculikova, Blanka
    Dzurina, Jozef
    BOUNDARY VALUE PROBLEMS, 2014,