V2O3/VN@C Heterostructures with Fast Charge Transfer as High-Performance Cathodes of Zinc-Ion Batteries

被引:1
|
作者
Nie, Haolong [1 ]
Wen, Jing [1 ]
Shang, Chaoqun [1 ]
Wang, Xiaomin [1 ]
Hu, Pu [1 ]
机构
[1] Wuhan Inst Technol, Sch Mat Sci & Engn, Hubei Key Lab Plasma Chem & Adv Mat, Wuhan 430205, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Zn batteries; vanadium-based cathodes; V2O3/VN heterostructure; charge transfer; rate capability; PSEUDOPOTENTIALS; CARBON;
D O I
10.1021/acssuschemeng.4c04349
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-ion batteries (ZIBs) are promising candidates for next-generation energy storage systems due to their high energy density and low cost. However, challenges such as poor cycling stability and sluggish kinetics hinder their practical application. In this study, we propose a novel heterostructure composed of microsphere V2O3 integrated with vanadium nitride (VN) and uniformly coated with carbon (V2O3/VN@C) to address these challenges. The optimized V2O3/VN@C heterostructure exhibits excellent stability during cycling within a voltage window of 0.1-1.3 V (vs Zn/Zn2+). The V2O3/VN@C electrode exhibits a large specific capacity (278 mA h g(-1) at 200 mA g(-1)), remarkable cycling stability (96% capacity retention after 400 cycles at 200 mA g(-1)), improved rate capacity (141 mA h g(-1) at 15 A g(-1)), and higher energy density besides. Furthermore, the investigation of the Zn-ion storage mechanism in the V2O3/VN@C electrode reveals that the heterostructure effectively enhances the conductivity and inhibits the phase transition of V2O3 to a high-valence state. During charging and discharging, the heterostructure facilitates the desolvation process of Zn[H2O](6)(2+) and accelerates the charge transfer kinetics of the electrodes. The proposed strategy provides new opportunities for designing long-cycling and high-energy cathodes for AZIBs and beyond.
引用
收藏
页码:12948 / 12955
页数:8
相关论文
共 50 条
  • [31] Freestanding MXene-Scaffolded Film Cathodes Enable High-Performance Flexible Zinc-Ion Batteries
    Zeng, Zhen
    Shen, Jianyu
    Lai, Yiliang
    Hua, Guoxin
    Wang, Yuxiao
    Liu, Junyang
    Tang, Weihua
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (36)
  • [32] Using MXene as a Chemically Induced Initiator to Construct High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Chen, Jie
    Liu, Yanpeng
    Xiao, Baoquan
    Huang, Juanjuan
    Chen, Hongwei
    Zhu, Kun
    Zhang, Junkai
    Cao, Guozhong
    He, Guanjie
    Ma, Jing
    Peng, Shanglong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (35)
  • [33] Constructing oxygen deficiency-rich V2O3@PEDOT cathode for high-performance aqueous zinc-ion batteries
    Sun, Dong-Fei
    Wang, Zi-Juan
    Tian, Tian
    Yu, Xin
    Yu, Dan-Dan
    Zhou, Xiao-Zhong
    Ma, Guo-Fu
    Lei, Zi-Qiang
    RARE METALS, 2024, 43 (02) : 635 - 646
  • [34] Constructing oxygen deficiency-rich V2O3@PEDOT cathode for high-performance aqueous zinc-ion batteries
    Dong-Fei Sun
    Zi-Juan Wang
    Tian Tian
    Xin Yu
    Dan-Dan Yu
    Xiao-Zhong Zhou
    Guo-Fu Ma
    Zi-Qiang Lei
    Rare Metals, 2024, 43 (02) : 635 - 646
  • [35] Ultrasmall, Amorphous V2O3 Intimately Anchored on a Carbon Nanofiber Aerogel Toward High-Rate Zinc-Ion Batteries
    Shi, Huifa
    Cao, Jiakai
    Sun, Weiyi
    Lu, Guixia
    Lan, Hongbo
    Xu, Lei
    Ghazi, Zahid Ali
    Fan, Dinghui
    Mao, Zongyu
    Han, Daliang
    Liu, Wenbao
    Niu, Shuzhang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (15) : 18812 - 18823
  • [36] Spray-dried V2O5 as cathode material for high-performance aqueous zinc-ion batteries
    Roex, Edith
    Boschini, Frederic
    Delaval, Vincent
    Schrijnemakers, Audrey
    Cloots, Rudi
    Mahmoud, Abdelfattah
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 929
  • [37] High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries
    Xin Yu
    Fang Hu
    Zhi-Qiang Guo
    Lei Liu
    Gui-Hong Song
    Kai Zhu
    Rare Metals, 2022, 41 : 29 - 36
  • [38] High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries
    Xin Yu
    Fang Hu
    Zhi-Qiang Guo
    Lei Liu
    Gui-Hong Song
    Kai Zhu
    Rare Metals, 2022, 41 (01) : 29 - 36
  • [39] Carbon-encapsulated V2O3 nanorods for high-performance aqueous Zn-ion batteries
    Hao, Ziyi
    Jiang, Weikang
    Zhu, Kaiyue
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [40] Crystalline and amorphous MnO2 cathodes with open framework enable high-performance aqueous zinc-ion batteries
    Huang, Chunfu
    Wu, Cong
    Zhang, Zilu
    Xie, Yunyun
    Li, Yang
    Yang, Caihong
    Wang, Hai
    FRONTIERS OF MATERIALS SCIENCE, 2021, 15 (02) : 202 - 215