The soliton solutions for the higher-order nonlinear Schrödinger equation with nonzero boundary conditions: Riemann-Hilbert method

被引:0
|
作者
Wang, Yuxia [1 ]
Huang, Lin [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized NLS equation; N-soliton solutions; nonzero boundary condition; Riemann-Hilbert approach; BRIGHT;
D O I
10.1002/mma.10430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper explores the Riemann-Hilbert method for deriving exact N-soliton solutions of the sixth-order nonlinear Schr & ouml;dinger (6th-NLS) equation with nonzero boundary condition. The analytical process comprises three fundamental steps. First, transformations are used to simplify the nonzero boundaries. Next, the inverse scattering method establishes a crucial link between the solutions of the 6th-NLS equation and the corresponding Riemann-Hilbert problem. Finally, this Riemann-Hilbert problem is systematically solved. Additionally, selected parameter values in the solutions generate graphical representations, vividly illustrating the solutions to the 6th-NLS equation.
引用
收藏
页码:2179 / 2193
页数:15
相关论文
共 50 条
  • [31] Kuznetsov–Ma soliton and Akhmediev breather of higher-order nonlinear Schrdinger equation
    李再东
    吴璇
    李秋艳
    贺鹏斌
    Chinese Physics B, 2016, (01) : 524 - 528
  • [32] Dark Bound Solitons and Soliton Chains for the Higher-Order Nonlinear Schrödinger Equation
    Zhi-Yuan Sun
    Yi-Tian Gao
    Xiang-Hua Meng
    Xin Yu
    Ying Liu
    International Journal of Theoretical Physics, 2013, 52 : 689 - 698
  • [33] Riemann-Hilbert method to the Ablowitz-Ladik equation: Higher-order cases
    Liu, Huan
    Shen, Jing
    Geng, Xianguo
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (03)
  • [34] Riemann-Hilbert Problem and Multiple High-order Poles Solutions of the Focusing mKdV Equation with Nonzero Boundary Conditions
    Zi-yi WANG
    Shou-fu TIAN
    Jin-jie YANG
    Acta Mathematicae Applicatae Sinica, 2025, 41 (01) : 234 - 251
  • [35] Spectral and soliton structures of the Sasa–Satsuma higher-order nonlinear Schrödinger equation
    Jianping Wu
    Analysis and Mathematical Physics, 2021, 11
  • [36] Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers
    Jigen Chen
    Zitong Luan
    Qin Zhou
    Abdullah Kamis Alzahrani
    Anjan Biswas
    Wenjun Liu
    Nonlinear Dynamics, 2020, 100 : 2817 - 2821
  • [37] Riemann-Hilbert Problem and Multiple High-order Poles Solutions of the Focusing mKdV Equation with Nonzero Boundary Conditions
    Wang, Zi-yi
    Tian, Shou-fu
    Yang, Jin-jie
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2025, 41 (01): : 234 - 251
  • [38] Riemann–Hilbert approach and soliton solutions for the Lakshmanan–Porsezian–Daniel equation with nonzero boundary conditions
    Yilin Wang
    Biao Li
    Communications in Theoretical Physics, 2024, 76 (11) : 22 - 34
  • [39] Investigation of optical soliton solutions of higher-order nonlinear Schrödinger equation having Kudryashov nonlinear refractive index
    Ozisik M.
    Secer A.
    Bayram M.
    Cinar M.
    Ozdemir N.
    Esen H.
    Onder I.
    Optik, 2023, 274
  • [40] Some exact solutions to the inhomogeneous higher-order nonlinear Schrdinger equation by a direct method
    张焕萍
    李彪
    陈勇
    Chinese Physics B, 2010, 19 (06) : 36 - 42