The soliton solutions for the higher-order nonlinear Schrödinger equation with nonzero boundary conditions: Riemann-Hilbert method

被引:0
|
作者
Wang, Yuxia [1 ]
Huang, Lin [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized NLS equation; N-soliton solutions; nonzero boundary condition; Riemann-Hilbert approach; BRIGHT;
D O I
10.1002/mma.10430
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper explores the Riemann-Hilbert method for deriving exact N-soliton solutions of the sixth-order nonlinear Schr & ouml;dinger (6th-NLS) equation with nonzero boundary condition. The analytical process comprises three fundamental steps. First, transformations are used to simplify the nonzero boundaries. Next, the inverse scattering method establishes a crucial link between the solutions of the 6th-NLS equation and the corresponding Riemann-Hilbert problem. Finally, this Riemann-Hilbert problem is systematically solved. Additionally, selected parameter values in the solutions generate graphical representations, vividly illustrating the solutions to the 6th-NLS equation.
引用
收藏
页码:2179 / 2193
页数:15
相关论文
共 50 条