Prospective deep learning-based quantitative assessment of coronary plaque by computed tomography angiography compared with intravascular ultrasound: the REVEALPLAQUE study

被引:0
|
作者
Narula, Jagat [1 ]
Stuckey, Thomas D. [2 ]
Nakazawa, Gaku [3 ]
Ahmadi, Amir [4 ]
Matsumura, Mitsuaki [5 ]
Petersen, Kersten [6 ]
Mirza, Saba [6 ]
Ng, Nicholas [6 ]
Mullen, Sarah [6 ]
Schaap, Michiel [6 ]
Leipsic, Jonathan [7 ]
Rogers, Campbell [6 ]
Taylor, Charles A. [6 ]
Yacoub, Harout [8 ]
Gupta, Himanshu [9 ]
Matsuo, Hitoshi [10 ]
Rinehart, Sarah [11 ]
Maehara, Akiko [12 ]
机构
[1] McGovern Med Sch, Heart & Vasc Inst, 1825 Pressler St,SRB 205A, Houston, TX 77030 USA
[2] LeBauer Brodie Ctr, Heart & Vasc, Cone Hlth Heart & Vasc, Greensboro, NC USA
[3] Kindai Univ, Dept Med, Osaka, Japan
[4] Icahn Sch Med Mt Sinai, Cardiol, New York, NY USA
[5] Cardiovasc Res Fdn, Cardiol, New York, NY USA
[6] HeartFlow Inc, Mountain View, CA USA
[7] Univ British Columbia, Radiol, Vancouver, BC, Canada
[8] Staten Isl Univ Hosp, Northwell Hlth, Cardiol, New York, NY USA
[9] Valley Hlth Syst, Radiology, Ridgewood, NJ USA
[10] Gifu Heart Ctr, Med, Gifu, Japan
[11] Charleston Area Med Ctr Mem Hosp, Cardiol, Charleston, WV USA
[12] Columbia Univ, Cardiovasc Res Fdn, New York, NY USA
关键词
coronary artery disease; coronary luminal stenosis; vulnerable plaque; acute coronary syndrome; artificial intelligence; machine learning;
D O I
10.1093/ehjci/jeae115
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Coronary computed tomography angiography provides non-invasive assessment of coronary stenosis severity and flow impairment. Automated artificial intelligence (AI) analysis may assist in precise quantification and characterization of coronary atherosclerosis, enabling patient-specific risk determination and management strategies. This multicentre international study compared an automated deep learning-based method for segmenting coronary atherosclerosis in coronary computed tomography angiography (CCTA) against the reference standard of intravascular ultrasound (IVUS).Methods and results The study included clinically stable patients with known coronary artery disease from 15 centres in the USA and Japan. An AI-enabled plaque analysis was utilized to quantify and characterize total plaque (TPV), vessel, lumen, calcified plaque (CP), non-calcified plaque (NCP), and low-attenuation plaque (LAP) volumes derived from CCTA and compared with IVUS measurements in a blinded, core laboratory-adjudicated fashion. In 237 patients, 432 lesions were assessed; mean lesion length was 24.5 mm, and mean IVUS-TPV was 186.0 mm3. AI-enabled plaque analysis on CCTA showed strong correlation and high accuracy when compared with IVUS; correlation coefficient, slope, and Y intercept for TPV were 0.91, 0.99, and 1.87, respectively; for CP volume 0.91, 1.05, and 5.32, respectively; and for NCP volume 0.87, 0.98, and 15.24, respectively. Bland-Altman analysis demonstrated strong agreement with little bias for these measurements.Conclusion AI-enabled CCTA quantification and characterization of atherosclerosis demonstrated strong agreement with IVUS reference standard measurements. This tool may prove effective for accurate evaluation of coronary atherosclerotic burden and cardiovascular risk assessment. Graphical Abstract Matching cross-sectional, longitudinal, and 3D views of IVUS and CCTA show correlating presence of calcified and non-calcified plaque between the two imaging modalities. The table highlights plaque volume correlations for total plaque (TPV), calcified plaque (CP), and non-calcified plaque (NCP) on a per-lesion basis (n = 432). In the cross-sectional and longitudinal view, blue-coloured areas are calcified plaque and yellow-coloured areas are non-calcified plaque. In the 3D view, blue-coloured area is calcified plaque and yellow translucent-coloured area is non-calcified plaque.
引用
收藏
页码:1287 / 1295
页数:9
相关论文
共 50 条
  • [41] Comparison of spotty calcifications on multidetector computed tomography coronary angiography and vulnerable plaque characteristics on virtual histology intravascular ultrasound
    Van Velzen, J. E.
    Schuijf, J. D.
    De Graaf, F. R.
    De Graaf, M. A.
    Schalij, M. J.
    Kroft, L. J.
    De Roos, A.
    Jukema, J. W.
    Van der Wall, E. E.
    Bax, J. J.
    EUROPEAN HEART JOURNAL SUPPLEMENTS, 2011, 13 (0A) : A1 - A1
  • [42] Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease
    Cho, Hyungjoo
    Kang, Soo-Jin
    Min, Hyun-Seok
    Lee, June-Goo
    Kim, Won-Jang
    Kang, Se Hun
    Kang, Do-Yoon
    Lee, Pil Hyung
    Ahn, Jung-Min
    Park, Duk-Woo
    Lee, Seung-Whan
    Kim, Young-Hak
    Lee, Cheol Whan
    Park, Seong-Wook
    Park, Seung-Jung
    ATHEROSCLEROSIS, 2021, 324 : 69 - 75
  • [43] DEEP LEARNING-BASED PREDICTION FOR SIGNIFICANT CORONARY ARTERY STENOSIS FROM CORONARY COMPUTED TOMOGRAPHY ANGIOGRAPHY AMONG ASYMPTOMATIC POPULATION
    Lee, H.
    Park, H. E.
    Choi, S. -Y.
    Kim, M. J.
    ATHEROSCLEROSIS, 2023, 379 : S186 - S187
  • [44] Changes in Coronary Plaque Volume: Comparison of Serial Measurements on Intravascular Ultrasound and Coronary Computed Tomographic Angiography
    Nakanishi, Rine
    Alani, Anas
    Matsumoto, Suguru
    Li, Dong
    Fahmy, Michael
    Abraham, Jeby
    Dailing, Christopher
    Broersen, Alexander
    Kitslaar, Pieter H.
    Nasir, Khurram
    Min, James K.
    Budoff, Matthew J.
    TEXAS HEART INSTITUTE JOURNAL, 2018, 45 (02): : 84 - 91
  • [45] Accuracy of quantitative coronary angiography with computed tomography and its dependency on plaque composition
    Husmann, Lars
    Gaemperli, Oliver
    Schepis, Tiziano
    Scheffel, Hans
    Valenta, Ines
    Hoefflinghaus, Tobias
    Stolzmann, Paul
    Desbiolles, Lotus
    Herzog, Bernhard A.
    Leschka, Sebastian
    Marincek, Borut
    Alkadhi, Hatem
    Kaufmann, Philipp A.
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2008, 24 (08): : 895 - 904
  • [46] Comprehensive assessment of spotty calcifications on computed tomography angiography: Comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis
    Joëlla E. van Velzen
    Fleur R. de Graaf
    Michiel A. de Graaf
    Joanne D. Schuijf
    Lucia J. Kroft
    Albert de Roos
    Johan H. C. Reiber
    Jeroen J. Bax
    J. Wouter Jukema
    Eric Boersma
    Martin J. Schalij
    Ernst E. van der Wall
    Journal of Nuclear Cardiology, 2011, 18 : 893 - 903
  • [47] Comprehensive assessment of spotty calcifications on computed tomography angiography: Comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis
    van Velzen, Joella E.
    de Graaf, Fleur R.
    de Graaf, Michiel A.
    Schuijf, Joanne D.
    Kroft, Lucia J.
    de Roos, Albert
    Reiber, Johan H. C.
    Bax, Jeroen J.
    Jukema, J. Wouter
    Boersma, Eric
    Schalij, Martin J.
    van der Wall, Ernst E.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2011, 18 (05) : 893 - 903
  • [48] Machine learning-based prediction of insufficient contrast enhancement in coronary computed tomography angiography
    Lopes, R. R.
    Van den Boogert, T. P. W.
    Lobe, N. H. J.
    Verwest, T. A.
    Henriques, J. P. S.
    Marquering, H. A.
    Planken, R. N.
    EUROPEAN RADIOLOGY, 2022, 32 (10) : 7136 - 7145
  • [49] Performance of machine learning-based coronary computed tomography angiography for selecting revascularization candidates
    Huang, Zengfa
    Ding, Yi
    Yang, Yang
    Zhao, Shengchao
    Zhang, Shutong
    Xiao, Jianwei
    Ding, Chengyu
    Guo, Ning
    Li, Zuoqin
    Zhou, Shiguang
    Cao, Guijuan
    Wang, Xiang
    ACTA RADIOLOGICA, 2024, 65 (01) : 123 - 132
  • [50] Longitudinal quantitative assessment of coronary plaque progression related to glycemic status using serial coronary computed tomography angiography
    Won, K. B.
    Lee, S. E.
    Lee, B. K.
    Sung, J. M.
    Park, H. B.
    Heo, R.
    Hadamitzky, M.
    Rizvi, A.
    Kim, Y. J.
    Conte, E.
    Andreini, D.
    Budoff, M. J.
    Leipsic, J. A.
    Min, J. K.
    Chang, H. J.
    EUROPEAN HEART JOURNAL, 2018, 39 : 480 - 480