Inventory Prediction Using a Modified Multi-Dimensional Collaborative Wrapped Bi-Directional Long Short-Term Memory Model

被引:0
|
作者
Abualuroug, Said [1 ]
Alzubi, Ahmad [1 ]
Iyiola, Kolawole [1 ]
机构
[1] Univ Mediterranean Karpasia, Inst Social Sci, TR-33000 Mersin, Turkiye
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 13期
关键词
inventory prediction; BiLSTM; collaborative attention mechanisms; multi-dimensional attention layer; Taylor series; ENTERPRISES;
D O I
10.3390/app14135817
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inventory prediction is concerned with the forecasting of future demand for products in order to optimize inventory levels and supply chain management. The challenges include demand volatility, data quality, multi-dimensional interactions, lead time variability, seasonal trends, and dynamic pricing. Nevertheless, these models suffer from numerous shortcomings, and in this research, we propose a new model, MMCW-BiLSTM (modified multi-dimensional collaboratively wrapped BiLSTM), for inventory prediction. The MMCW-BiLSTM model reflects a considerable leap in inventory forecasting by combining a number of components in order to consider intricate temporal dependencies and incorporate feature interactions. The MMCW-BiLSTM makes use of BiLSTM layers, collaborative attention mechanisms, and a multi-dimensional attention approach to learn from augmented datasets consisting of the original features and the extracted time series data. Moreover, adding a Taylor series transformation allows for a more precise description of the features in the model, thus improving the prediction precision. The results show that the models make the least mistakes when they use the AV demand forecasting dataset, with MAE values of 1.75, MAPE values of 2.89, MSE values of 6.76, and RMSE values of 2.6. Similarly, when utilizing the product demand dataset, the model also achieves the lowest error values for these metrics at 1.97, 3.91, 8.76, and 2.96. Likewise, when utilizing the dairy goods sales dataset, the model also achieves the lowest error values for these metrics at 2.54, 3.69, 10.39, and 3.22.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] A performance degradation prediction model for PEMFC based on bi-directional long short-term memory and multi-head self-attention mechanism
    Jia, Chunchun
    He, Hongwen
    Zhou, Jiaming
    Li, Kunang
    Li, Jianwei
    Wei, Zhongbao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 133 - 146
  • [22] Intelligent Tool-Wear Prediction Based on Informer Encoder and Bi-Directional Long Short-Term Memory
    Xie, Xingang
    Huang, Min
    Liu, Yue
    An, Qi
    MACHINES, 2023, 11 (01)
  • [23] Daily Peak Load Prediction Based on Correlation Analysis and Bi-directional Long Short-term Memory Network
    Li Y.
    Liu X.
    Xing F.
    Wen G.
    Lu N.
    He H.
    Jiao R.
    Dianwang Jishu/Power System Technology, 2021, 45 (07): : 2719 - 2730
  • [24] Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory
    Junhao Wu
    Zhaocai Wang
    Yuan Hu
    Sen Tao
    Jinghan Dong
    Water Resources Management, 2023, 37 : 937 - 953
  • [25] Sensing Incipient Faults in Power Transformers Using Bi-Directional Long Short-Term Memory Network
    Das, Suchandan
    Paramane, Ashish
    Chatterjee, Soumya
    Rao, Ungarala Mohan
    IEEE SENSORS LETTERS, 2023, 7 (01)
  • [26] Separating overlapping bat calls with a bi-directional long short-term memory network
    Zhang, Kangkang
    Liu, Tong
    Song, Shengjing
    Zhao, Xin
    Sun, Shijun
    Metzner, Walter
    Feng, Jiang
    Liu, Ying
    INTEGRATIVE ZOOLOGY, 2022, 17 (05): : 741 - 751
  • [27] High Precision Dimensional Measurement with Convolutional Neural Network and Bi-Directional Long Short-Term Memory (LSTM)
    Wang, Yuhao
    Chen, Qibai
    Ding, Meng
    Li, Jiangyun
    SENSORS, 2019, 19 (23)
  • [28] Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory
    Wu, Junhao
    Wang, Zhaocai
    Hu, Yuan
    Tao, Sen
    Dong, Jinghan
    WATER RESOURCES MANAGEMENT, 2023, 37 (02) : 937 - 953
  • [29] Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory
    Ul Hassan, Shahab
    Zahid, Mohd S. Mohd
    Abdullah, Talal A. A.
    Husain, Khaleel
    DIGITAL HEALTH, 2022, 8
  • [30] Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory
    Li, Haolong
    Chen, Qihong
    Zhang, Liyan
    Liu, Li
    Xiao, Peng
    APPLIED ENERGY, 2023, 344