The Parameter Calibration of Social Force Model for Pedestrian Flow Simulation Based on YOLOv5

被引:0
|
作者
Li, Tianle [1 ]
Xu, Bingbing [1 ]
Lu, Weike [1 ]
Chen, Zidan [1 ]
Zhang, Sizheng [1 ]
Xia, Fanjun [1 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215000, Peoples R China
关键词
social force model; YOLOv5; parameter calibration; optimization; EVACUATION;
D O I
10.3390/s24155011
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
With the increasing importance of subways in urban public transportation systems, pedestrian flow simulation for supporting station management and risk analysis becomes more necessary. There is a need to calibrate the simulation model parameters with real-world pedestrian flow data to achieve a simulation closer to the real situation. This study presents a calibration approach based on YOLOv5 for calibrating the simulation model parameters in the social force model inserted in Anylogic. This study compared the simulation results after model calibration with real data. The results show that (1) the parameters calibrated in this paper can reproduce the characteristics of pedestrian flow in the station; (2) the calibration model not only decreases global errors but also overcomes the common phenomenon of large differences between simulation and reality.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Precision detection of crop diseases based on improved YOLOv5 model
    Zhao, Yun
    Yang, Yuan
    Xu, Xing
    Sun, Cheng
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [42] TLDM: An Enhanced Traffic Light Detection Model Based on YOLOv5
    Song, Jun
    Hu, Tong
    Gong, Zhengwei
    Zhang, Youcheng
    Cui, Mengchao
    ELECTRONICS, 2024, 13 (15)
  • [43] Laboratory Behavior Detection Method Based on Improved Yolov5 Model
    Zhang, Zhaofeng
    Ao, Daiqin
    Zhou, Luoyu
    Yuan, Xiaolong
    Luo, Mingzhang
    2021 INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SOCIAL INTELLIGENCE (ICCSI), 2021,
  • [44] UAV forest fire detection based on lightweight YOLOv5 model
    Zhou, Mengdong
    Wu, Lei
    Liu, Shuai
    Li, Jianjun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (22) : 61777 - 61788
  • [45] A Novel Lightweight Traffic Sign Recognition Model Based on YOLOv5
    Li, Wenju
    Zhang, Gan
    Cui, Liu
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (05)
  • [46] Object Detection for Construction Waste Based on an Improved YOLOv5 Model
    Zhou, Qinghui
    Liu, Haoshi
    Qiu, Yuhang
    Zheng, Wuchao
    SUSTAINABILITY, 2023, 15 (01)
  • [47] Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
    Sun, Yu
    Zhang, Dongwei
    Guo, Xindong
    Yang, Hua
    PLANTS-BASEL, 2023, 12 (17):
  • [48] Automatic detection of indoor occupancy based on improved YOLOv5 model
    Chao Wang
    Yunchu Zhang
    Yanfei Zhou
    Shaohan Sun
    Hanyuan Zhang
    Yepeng Wang
    Neural Computing and Applications, 2023, 35 : 2575 - 2599
  • [49] An Improved Pig Counting Algorithm Based on YOLOv5 and DeepSORT Model
    Huang, Yigui
    Xiao, Deqin
    Liu, Junbin
    Tan, Zhujie
    Liu, Kejian
    Chen, Miaobin
    SENSORS, 2023, 23 (14)
  • [50] An Improved Forest Fire and Smoke Detection Model Based on YOLOv5
    Li, Junhui
    Xu, Renjie
    Liu, Yunfei
    FORESTS, 2023, 14 (04):