Single-Cell Profiling Indicates a Proinflammatory Role of Meningeal Ectopic Lymphoid Tissue in Experimental Autoimmune Encephalomyelitis

被引:3
|
作者
Diddens, Jolien [1 ]
Lepennetier, Gildas [1 ]
Friedrich, Verena [1 ]
Schmidt, Monika [1 ]
Brand, Rosa M. [1 ]
Georgieva, Tanya [1 ]
Hemmer, Bernhard [1 ,2 ]
Lehmann-Horn, Klaus [1 ]
机构
[1] Tech Univ Munich, Sch Med, Dept Neurol, Munich, Germany
[2] Munich Cluster Syst Neurol SyNergy, Munich, Germany
来源
关键词
CORTICAL DEMYELINATION; DISEASE; INFLAMMATION; ANTIBODIES; FOLLICLES; PATHOLOGY; PLAYS;
D O I
10.1212/NXI.0000000000200185
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and ObjectivesThe factors that drive progression in multiple sclerosis (MS) remain obscure. Identification of key properties of meningeal inflammation will contribute to a better understanding of the mechanisms of progression and how to prevent it.MethodsApplying single-cell RNA sequencing, we compared gene expression profiles in immune cells from meningeal ectopic lymphoid tissue (mELT) with those from secondary lymphoid organs (SLOs) in spontaneous chronic experimental autoimmune encephalomyelitis (EAE), an animal model of MS.ResultsGenerally, mELT contained the same immune cell types as SLOs, suggesting a close relationship. Preponderance of B cells over T cells, an increase in regulatory T cells and granulocytes, and a decrease in na & iuml;ve CD4+ T cells characterize mELT compared with SLOs. Differential gene expression analysis revealed that immune cells in mELT show a more activated and proinflammatory phenotype compared with their counterparts in SLOs. However, the increase in regulatory T cells and upregulation of immunosuppressive genes in most immune cell types indicate that there are mechanisms in place to counter-regulate the inflammatory events, keeping the immune response emanating from mELT in check.DiscussionCommon features in immune cell composition and gene expression indicate that mELT resembles SLOs and may be regarded as a tertiary lymphoid tissue. Distinct differences in expression profiles suggest that mELT rather than SLOs is a key driver of CNS inflammation in spontaneous EAE. Our data provide a starting point for further exploration of molecules or pathways that could be targeted to disrupt mELT formation.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Single Cell Transcriptomic Analysis Of The Neurovasculature In Experimental Autoimmune Encephalomyelitis Reveals A Critical Role For Wnt/β-catenin Signaling In Pathogenic Neoangiogenesis
    Shahriar, S.
    Menon, V.
    Gold, G.
    Bastiaans, J.
    Stuhlmann, H.
    Agalliu, D.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (1_SUPPL) : 134 - 134
  • [42] Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis
    Wang, Zhihua
    Zhang, Xi
    Lu, Shu
    Zhang, Chuankai
    Ma, Zhe
    Su, Rui
    Li, Yuanfang
    Sun, Ting
    Li, Yutao
    Hong, Mingyang
    Deng, Xinyi
    Monjezi, Mohammad Rafiee
    Hristov, Michael
    Steffens, Sabine
    Santovito, Donato
    Dornmair, Klaus
    Ley, Klaus
    Weber, Christian
    Mohanta, Sarajo K.
    Habenicht, Andreas J. R.
    Yin, Changjun
    NATURE CARDIOVASCULAR RESEARCH, 2023, 2 (03): : 290 - +
  • [43] Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter
    Achlatis, Michelle
    Pernice, Mathieu
    Green, Kathryn
    de Goeij, Jasper M.
    Guagliardo, Paul
    Kilburn, Matthew R.
    Hoegh-Guldberg, Ove
    Dove, Sophie
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 286 (1916)
  • [44] Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis
    Zhihua Wang
    Xi Zhang
    Shu Lu
    Chuankai Zhang
    Zhe Ma
    Rui Su
    Yuanfang Li
    Ting Sun
    Yutao Li
    Mingyang Hong
    Xinyi Deng
    Mohammad Rafiee Monjezi
    Michael Hristov
    Sabine Steffens
    Donato Santovito
    Klaus Dornmair
    Klaus Ley
    Christian Weber
    Sarajo K. Mohanta
    Andreas J. R. Habenicht
    Changjun Yin
    Nature Cardiovascular Research, 2023, 2 : 290 - 306
  • [45] The Role of Single-Cell Profiling and Deep Immunophenotyping in Understanding Immune Therapy Cardiotoxicity
    Huang, Yuhsin Vivian
    Waliany, Sarah
    Lee, Daniel
    Galdos, Francisco X.
    Witteles, Ronald M.
    Neal, Joel W.
    Fan, Alice C.
    Maecker, Holden T.
    Nguyen, Patricia K.
    Wu, Sean M.
    Zhu, Han
    JACC: CARDIOONCOLOGY, 2022, 4 (05): : 629 - 634
  • [46] Single-cell profiling reveals a potent role of quercetin in promoting hair regeneration
    Zhao, Qian
    Zheng, Yandong
    Zhao, Dongxin
    Zhao, Liyun
    Geng, Lingling
    Ma, Shuai
    Cai, Yusheng
    Liu, Chengyu
    Yan, Yupeng
    Belmonte, Juan Carlos Izpisua
    Wang, Si
    Zhang, Weiqi
    Liu, Guang-Hui
    Qu, Jing
    PROTEIN & CELL, 2023, 14 (06) : 398 - 415
  • [47] Role of glycine N-methyltransferase in the regulation of T cell responses in experimental autoimmune encephalomyelitis
    Li, Chung-Hsien
    Lin, Ming-Hong
    Chen, Yen-Fu
    Chu, Shih-Han
    Tu, Pang-Hsien
    Fang, Cheng-Chieh
    Yen, Chia-Hung
    Liang, Peir-In
    Huang, Jason C.
    Su, Yu-Chia
    Sytwu, Huey-Kang
    Chen, Yi-Ming A.
    CANCER RESEARCH, 2015, 75
  • [48] Differential role of B-cell Maturation Antigen in two models of experimental autoimmune encephalomyelitis
    Kumar, Gaurav
    Ko, Rose M.
    Axtell, Robert C.
    MULTIPLE SCLEROSIS JOURNAL, 2016, 22 : 49 - 50
  • [49] Role of CD4 T Cell in Relapsing-Remitting Experimental Autoimmune Encephalomyelitis
    Hu, Jin
    Zhou, Xiangyu
    Cao, Yikun
    Tian, Huili
    Li, Na
    Cheng, Xiuli
    Yang, Xiaoying
    Dang, Hongwan
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (203):
  • [50] Genomic and transcriptomic profiling of malformations of cortical development: from tissue to single-cell resolution
    Baldassari, S.
    Chipaux, M.
    Marsan, E.
    Ferrand-Sorbets, S.
    Dorfmuller, G.
    Adle-Biassette, H.
    Baulac, S.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 4 - 4