A Decentralized Communication-Efficient Federated Analytics Framework for Connected Vehicles

被引:1
|
作者
Zhao, Liang [1 ]
Valero, Maria [1 ]
Pouriyeh, Seyedamin [1 ]
Li, Fangyu [2 ]
Guo, Lulu [3 ]
Han, Zhu [4 ]
机构
[1] Kennesaw State Univ, Dept Informat Technol, Marietta, GA 30060 USA
[2] Beijing Univ Technol, Engn Res Ctr Digital Community, Beijing Key Lab Computat Intelligence & Intelligen, Minist Educ,Fac Informat Technol, Beijing 100124, Peoples R China
[3] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[4] Univ Houston, Elect & Comp Engn Dept, Houston, TX 77004 USA
关键词
Decentralized computing; federated analytics; smart connected vehicles;
D O I
10.1109/TVT.2024.3380582
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a novel communication-efficient and decentralized approach for data analytics in connected vehicles. We extend the paradigm of federated learning (FL) to enable decentralized on-vehicle model training without a central server. To improve communication efficiency, we design a federated regularized nonlinear acceleration-based local training scheme to reduce the communication rounds and a random broadcast gossip-based mechanism to decrease the complexity per iteration. Experimental results demonstrate that our approach significantly reduces the communication cost compared to general gradient descent and momentum-based FL solutions and is promising for efficient data analytics in autonomous vehicle environments.
引用
收藏
页码:10856 / 10861
页数:6
相关论文
共 50 条
  • [1] Communication-Efficient Federated Learning for Connected Vehicles with Constrained Resources
    Shen, Shuaiqi
    Yu, Chong
    Zhang, Kuan
    Chen, Xi
    Chen, Huimin
    Ci, Song
    [J]. IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1636 - 1641
  • [2] Communication-Efficient Design for Quantized Decentralized Federated Learning
    Chen, Li
    Liu, Wei
    Chen, Yunfei
    Wang, Weidong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1175 - 1188
  • [3] Communication-Efficient Semihierarchical Federated Analytics in IoT Networks
    Zhao, Liang
    Valero, Maria
    Pouriyeh, Seyedamin
    Li, Lei
    Sheng, Quan Z.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 9 (14) : 12614 - 12627
  • [4] Communication-efficient and Scalable Decentralized Federated Edge Learning
    Yapp, Austine Zong Han
    Koh, Hong Soo Nicholas
    Lai, Yan Ting
    Kang, Jiawen
    Li, Xuandi
    Ng, Jer Shyuan
    Jiang, Hongchao
    Lim, Wei Yang Bryan
    Xiong, Zehui
    Niyato, Dusit
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 5032 - 5035
  • [5] FedDQ: A communication-efficient federated learning approach for Internet of Vehicles
    Mo, Zijia
    Gao, Zhipeng
    Zhao, Chen
    Lin, Yijing
    [J]. Journal of Systems Architecture, 2022, 131
  • [6] FedDQ: A communication-efficient federated learning approach for Internet of Vehicles
    Mo, Zijia
    Gao, Zhipeng
    Zhao, Chen
    Lin, Yijing
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2022, 131
  • [7] A Layer Selection Optimizer for Communication-Efficient Decentralized Federated Deep Learning
    Barbieri, Luca
    Savazzi, Stefano
    Nicoli, Monica
    [J]. IEEE ACCESS, 2023, 11 : 22155 - 22173
  • [8] Communication-Efficient Personalized Federated Edge Learning for Decentralized Sensing in ISAC
    Zhu, Yonghui
    Zhang, Ronghui
    Cui, Yuanhao
    Wu, Sheng
    Jiang, Chunxiao
    Jing, Xiaojun
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 207 - 212
  • [9] Communication-efficient federated learning
    Chen, Mingzhe
    Shlezinger, Nir
    Poor, H. Vincent
    Eldar, Yonina C.
    Cui, Shuguang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)
  • [10] COMMUNICATION-EFFICIENT ONLINE FEDERATED LEARNING FRAMEWORK FOR NONLINEAR REGRESSION
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    Huang, Yih-Fang
    Kuh, Anthony
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5228 - 5232