Communication-efficient and Scalable Decentralized Federated Edge Learning

被引:0
|
作者
Yapp, Austine Zong Han [1 ]
Koh, Hong Soo Nicholas [1 ]
Lai, Yan Ting [1 ]
Kang, Jiawen [1 ]
Li, Xuandi [1 ]
Ng, Jer Shyuan [2 ]
Jiang, Hongchao [2 ]
Lim, Wei Yang Bryan [2 ]
Xiong, Zehui [3 ]
Niyato, Dusit [1 ]
机构
[1] Nanyang Technol Univ NTU, Sch Comp Sci & Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Alibaba NTU Singapore Joint Res Inst JRI, Singapore, Singapore
[3] Singapore Univ Technol & Design SUTD, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated Edge Learning (FEL) is a distributed Machine Learning (ML) framework for collaborative training on edge devices. FEL improves data privacy over traditional centralized ML model training by keeping data on the devices and only sending local model updates to a central coordinator for aggregation. However, challenges still remain in existing FEL architectures where there is high communication overhead between edge devices and the coordinator. In this paper, we present a working prototype of blockchain-empowered and communication-efficient FEL framework, which enhances the security and scalability towards large-scale implementation of FEL.
引用
收藏
页码:5032 / 5035
页数:4
相关论文
共 50 条
  • [1] Communication-Efficient Personalized Federated Edge Learning for Decentralized Sensing in ISAC
    Zhu, Yonghui
    Zhang, Ronghui
    Cui, Yuanhao
    Wu, Sheng
    Jiang, Chunxiao
    Jing, Xiaojun
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 207 - 212
  • [2] Communication-Efficient Design for Quantized Decentralized Federated Learning
    Chen, Li
    Liu, Wei
    Chen, Yunfei
    Wang, Weidong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1175 - 1188
  • [3] Communication-efficient federated learning
    Chen, Mingzhe
    Shlezinger, Nir
    Poor, H. Vincent
    Eldar, Yonina C.
    Cui, Shuguang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)
  • [4] Communication-Efficient Federated Learning for Wireless Edge Intelligence in IoT
    Mills, Jed
    Hu, Jia
    Min, Geyong
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 5986 - 5994
  • [5] Coded Federated Learning for Communication-Efficient Edge Computing: A Survey
    Zhang, Yiqian
    Gao, Tianli
    Li, Congduan
    Tan, Chee Wei
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 4098 - 4124
  • [6] A Layer Selection Optimizer for Communication-Efficient Decentralized Federated Deep Learning
    Barbieri, Luca
    Savazzi, Stefano
    Nicoli, Monica
    [J]. IEEE ACCESS, 2023, 11 : 22155 - 22173
  • [7] LGCM: A Communication-Efficient Scheme for Federated Learning in Edge Devices
    Saadat, Nafas Gul
    Thahir, Sameer Mohamed
    Kumar, Santhosh G.
    Jereesh, A. S.
    [J]. 2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [8] Communication-Efficient Federated Learning for Resource-Constrained Edge Devices
    Lan, Guangchen
    Liu, Xiao-Yang
    Zhang, Yijing
    Wang, Xiaodong
    [J]. IEEE Transactions on Machine Learning in Communications and Networking, 2023, 1 : 210 - 224
  • [9] Communication-Efficient Vertical Federated Learning
    Khan, Afsana
    ten Thij, Marijn
    Wilbik, Anna
    [J]. ALGORITHMS, 2022, 15 (08)
  • [10] LotteryFL: Empower Edge Intelligence with Personalized and Communication-Efficient Federated Learning
    Li, Ang
    Sun, Jingwei
    Wang, Binghui
    Duan, Lin
    Li, Sicheng
    Chen, Yiran
    Li, Hai
    [J]. 2021 ACM/IEEE 6TH SYMPOSIUM ON EDGE COMPUTING (SEC 2021), 2021, : 68 - 79