Realization of a gas puff imaging system on the Wendelstein 7-X stellarator

被引:2
|
作者
Terry, J. L. [1 ]
von Stechow, A. [2 ]
Baek, S. G. [1 ]
Ballinger, S. B. [1 ]
Grulke, O. [2 ,4 ]
von Sehren, C. [2 ]
Laube, R. [2 ]
Killer, C. [2 ]
Scharmer, F. [2 ]
Brunner, K. J. [2 ]
Knauer, J. [2 ]
Bois, S. [3 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[2] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany
[3] UPMC, Lab Phys Plasmas, Ecole Polytech, CNRS,Univ Paris Sud, Rte Saclay, F-91128 Palaiseau, France
[4] Tech Univ Denmark, Dept Phys, Lyngby, Denmark
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2024年 / 95卷 / 09期
关键词
EDGE TURBULENCE;
D O I
10.1063/5.0219336
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A system for studying the spatiotemporal dynamics of fluctuations in the boundary of the W7-X plasma using the "Gas-Puff Imaging" (GPI) technique has been designed, constructed, installed, and operated. This GPI system addresses a number of challenges specific to long-pulse superconducting devices, such as W7-X, including the long distance between the plasma and the vacuum vessel wall, the long distance between the plasma and diagnostic ports, the range of last closed flux surface (LCFS) locations for different magnetic configurations in W7-X, and management of heat loads on the system's plasma-facing components. The system features a pair of "converging-diverging" nozzles for partially collimating the gas puffed locally approximate to 135 mm radially outboard of the plasma boundary, a pop-up turning mirror for viewing the gas puff emission from the side (which also acts as a shutter for the re-entrant vacuum window), and a high-throughput optical system that collects visible emission resulting from the interaction between the puffed gas and the plasma and directs it along a water-cooled re-entrant tube directly onto the 8 x 16 pixel detector array of the fast camera. The DEGAS 2 neutral code was used to simulate the H-alpha (656 nm) and HeI (587 nm) line emission expected from well-characterized gas-puffs of H-2 and He and excited within typical edge plasma profiles in W7-X, thereby predicting line brightnesses used to reduce the risks associated with system sensitivity and placement of the field of view. Operation of GPI on W7-X shows excellent signal-to-noise ratios (>100 at 2 Mframes/s) over the field of view for minimally perturbing gas puffs. The GPI system provides detailed measurements of the two-dimensional (radial and poloidal) dynamics of plasma fluctuations in the W7-X edge and scrape-off layer and in and around the magnetic islands outside the LCFS that make up the island divertor configuration employed on W7-X.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Diagnostic developments for quasicontinuous operation of the Wendelstein 7-X stellarator
    Koenig, R.
    Cantarini, J.
    Dreier, H.
    Erckmann, V.
    Hildebrandt, D.
    Hirsch, M.
    Kocsis, G.
    Kornejew, P.
    Laux, M.
    Laqua, H.
    Pasch, E.
    Recsei, S.
    Szabo, V.
    Thomsen, H.
    Weller, A.
    Werner, A.
    Wolf, R.
    Ye, M. Y.
    Zoletnik, S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [32] Fast ion loss diagnostic for the Wendelstein 7-X stellarator
    Werner, A
    Darrow, DS
    Kuduk, R
    Weller, A
    ADVANCED DIAGNOSTICS FOR MAGNETIC AND INERTIAL FUSION, 2002, : 137 - 140
  • [33] Test of Superconducting Coils for the Wendelstein 7-X Stellarator Experiment
    Hertel, K.
    Viebke, H.
    Heenemann, C.
    Baldzuhn, J.
    Ehmler, H.
    Croari, G.
    Bensouda-Korachi, M.
    Genini, L.
    Renard, B.
    Vieillard, L.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2010, 20 (03) : 534 - 537
  • [34] Observation of Marfes in the Wendelstein 7-X stellarator with inboard limiters
    Wenzel, U.
    Biedermann, C.
    Kocsis, G.
    Szepesi, T.
    Blackwell, B. D.
    Klose, S.
    Knauer, J.
    Krychowiak, M.
    Stephey, L.
    Schmitz, O.
    Harris, J.
    Koenig, R.
    Pedersen, T. S.
    NUCLEAR FUSION, 2018, 58 (09)
  • [35] Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X
    Xanthopoulos, P.
    Jenko, F.
    PHYSICS OF PLASMAS, 2007, 14 (04)
  • [36] Construction of Wendelstein 7-X - engineering a steady state stellarator
    Bosch, H. -S.
    Erckmann, V.
    Koenig, R.
    Schauer, F.
    Stadler, R.
    Werner, A.
    2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 696 - 702
  • [37] The ECRH-Power Upgrade at the Wendelstein 7-X Stellarator
    Laqua, H. P.
    Avramidis, K. A.
    Braune, H.
    Chelis, I.
    Gantenbein, G.
    Illy, S.
    Ioannidis, Z.
    Jelonnek, J.
    Jin, J.
    Krier, L.
    Lechte, C.
    Leggieri, A.
    Legrand, F.
    Marsen, S.
    Moseev, D.
    Oosterbeek, H.
    Rzesnicki, T.
    Ruess, T.
    Stange, T.
    Thumm, M.
    Tigelis, I.
    Wolf, R. C.
    21ST JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON CYCLOTRON RESONANCE HEATING, EC21, 2023, 277
  • [38] Pressure surge in Wendelstein 7-X experimental stellarator facility
    Kaliatka, A.
    Uspuras, E.
    Kaliatka, T.
    KERNTECHNIK, 2012, 77 (02) : 134 - 140
  • [39] A stellarator reactor based on the optimization criteria of Wendelstein 7-X
    Wolf, R. C.
    FUSION ENGINEERING AND DESIGN, 2008, 83 (7-9) : 990 - 996
  • [40] Investigation of TESPEL cloud dynamics in Wendelstein 7-X stellarator
    Kocsis, G.
    Tamura, N.
    Bussiahn, R.
    McCarthy, K. J.
    Baldzuhn, J.
    Biedermann, C.
    Cseh, G.
    Damm, H.
    Kornejew, P.
    Koenig, R.
    Panadero, N.
    Szepesi, T.
    NUCLEAR FUSION, 2021, 61 (01)