Observational Characteristics of Circumplanetary-mass-object Disks in the Era of James Webb Space Telescope

被引:0
|
作者
Sun, Xilei [1 ]
Huang, Pinghui [2 ]
Dong, Ruobing [2 ]
Liu, Shang-Fei [1 ,3 ]
机构
[1] Sun Yet Sen Univ, Sch Phys & Astron, Zhuhai 519082, Peoples R China
[2] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada
[3] Sun Yat Sen Univ, CSST Sci Ctr Guangdong Hong Kong Macau Greater Bay, Zhuhai 519082, Peoples R China
来源
ASTROPHYSICAL JOURNAL | 2024年 / 972卷 / 01期
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
GIANT PLANET; EMISSION; ALMA; COMPANIONS; DEPENDENCE; CANDIDATE; ACCRETION; GAPS; MAPS; GAS;
D O I
10.3847/1538-4357/ad57c2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent observations have confirmed circumplanetary disks (CPDs) embedded in parental protoplanetary disks (PPDs). On the other hand, planetary-mass companions and planetary-mass objects (PMOs) are likely to harbor their own accretion disks. Unlike PPDs, CPDs and other disks around planet analogs are generally too compact to be spatially resolved by current instrumentation. In this study, we generate over 4000 spectral energy distributions of circum-PMO disks (CPMODs) with various host temperature and disk properties, which can be categorized into four prototypes, i.e., full, pretransitional, transitional, and evolved CPMODs. We propose a classification scheme based on their near-to-mid-infrared colors. Using those CPMOD models, we synthesize JWST (NIRCam and MIRI) photometry for F444W, F1000W, and F2550W wide filters. We show that F444W-F1000W and F444-F2550W colors can be applied to distinguish different types of CPMODs, especially for those around hot hosts. Our results indicate that the ongoing and future JWST observations are promising to unveil structures and properties of CPMODs.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Lagrange Points and the James Webb Space Telescope
    Teets, Donald
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (04): : 309 - 318
  • [22] Integration and verification of the James Webb Space Telescope
    Atkinson, C
    Harrison, P
    Matthews, G
    Atcheson, P
    OPTICAL MANUFACUTRING AND TESTING V, 2003, 5180 : 157 - 168
  • [23] Hartmann Test for the James Webb Space Telescope
    Knight, J. Scott
    Feinberg, Lee
    Howard, Joseph
    Acton, D. Scott
    Whitman, Tony L.
    Smith, Koby
    SPACE TELESCOPES AND INSTRUMENTATION 2016: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2016, 9904
  • [24] Status of the james webb space telescope observatory
    Clampin, Mark
    Proceedings of SPIE - The International Society for Optical Engineering, 2012, 8442
  • [25] Optical performance for the James Webb Space Telescope
    Lightsey, Paul A.
    Barto, Allison A.
    Contreras, James
    Proc SPIE Int Soc Opt Eng, 1600, PART 2 (825-832):
  • [26] The scientific capabilities of the James Webb Space Telescope
    Gardner, Jonathan P.
    SPACE TELESCOPES AND INSTRUMENTATION 2008: OPTICAL, INFRARED, AND MILLIMETER, PTS 1 AND 2, 2008, 7010
  • [27] The James Webb Space Telescope: Extending the Science
    Gardner, Jonathan P.
    SPACE TELESCOPES AND INSTRUMENTATION 2012: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2012, 8442
  • [28] James Webb Space Telescope use of XML
    Gal-Edd, Jonathan
    Fatig, Curtis
    SMC-IT 2006: 2nd IEEE International Conference on Space Mission Challenges for Information Technology, Proceedings, 2006, : 448 - 453
  • [29] Science operations with the James Webb Space Telescope
    Rigby, Jane
    Sonneborn, George
    Pollizzi, Joe
    Brown, Thomas
    Isaacs, John
    SPACE TELESCOPES AND INSTRUMENTATION 2012: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2012, 8442
  • [30] Scientific commissioning of the James Webb Space Telescope
    Kimble, Randy A.
    DeLisa, Amy S.
    Friedman, Scott D.
    Golimowski, David A.
    Hagedorn, Andria
    Parrish, Keith A.
    Reis, Carl A.
    Rigby, Jane R.
    Van Campen, Julie M.
    Wheate, Lauren R.
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2022, 12180