Elucidation of Fatigue Fracture Mechanism on Glass-Fiber-Reinforced-Plastics

被引:0
|
作者
Arakawa, J. [1 ]
Sakai, M. [2 ]
Hayashi, M. [2 ]
Akebono, H. [2 ]
Sugeta, A. [2 ]
Ohshita, J. [2 ]
Tanizawa, H. [3 ]
Shimizu, K. [3 ]
Ogawa, J. [4 ]
机构
[1] Okayama Univ, Okayama Shi 3-1-1 Tsushimanaka,Kita Ku, Okayama 7008530, Japan
[2] Hiroshima Univ, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
[3] Digital Monozukuri Mfg Educ & Res Ctr, 3-10-32 Kagamiyama, Higashihiroshima 7390046, Japan
[4] Mazda Motor Corp, 3-1 Shinchi, Fuchu, Hiroshima 7308670, Japan
关键词
GFRP; Fatigue crack propagation; Matrix-fiber interface; Shear lag model;
D O I
10.1007/978-981-99-8643-9_24
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, it was elucidated that the fatigue failure mechanism of glass-fiber reinforced plastics (GFRP) with different fiber orientations, and the relationship between the fiber orientation and the failure mechanism by using a simple unidirectional fiber orientation. Fatigue tests exhibited that GFRP, whose glass fiber oriented parallel to the load direction showed high fatigue strength. Furthermore, as a result of observing the fatigue fracture, in the case of GFRP containing fibers oriented parallel to the loading direction, fatigue cracks occur at the fiber edges, propagated through between the glass fibers and the matrix. After that, the fatigue crack propagation rate gradually decreases, the fatigue crack growth stopped, and finally, GFRP material was statically fractured. Therefore, this suggests that the increase in fiber length of fibers oriented parallel to the loading direction extends the fatigue crack propagation life, leading to an increase in total fatigue life.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 50 条
  • [21] MECHANISMS OF FATIGUE FRACTURE IN SHORT GLASS FIBER-REINFORCED POLYMERS
    LANG, RW
    MANSON, JA
    HERTZBERG, RW
    JOURNAL OF MATERIALS SCIENCE, 1987, 22 (11) : 4015 - 4030
  • [22] Mechanical property and fracture mechanism of glass fiber reinforced polymer and carbon fiber reinforced polymer
    Cuaiman, T.
    Karin, P.
    Ohtake, N.
    Akasaka, H.
    Larpsuriyakul, P.
    Prakymoramas, N.
    Rojsatean, J.
    Thanomjitr, D.
    Kaewket, S.
    9TH THAI SOCIETY OF MECHANICAL ENGINEERS, INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (TSME-ICOME 2018), 2019, 501
  • [23] FRACTURE MECHANISMS IN GLASS-REINFORCED PLASTICS
    HARRIS, B
    MORLEY, J
    PHILLIPS, DC
    JOURNAL OF MATERIALS SCIENCE, 1975, 10 (12) : 2050 - 2061
  • [24] FATIGUE LIFE PREDICTION OF GLASS FIBER-REINFORCED PLASTICS USING THE ACOUSTOULTRASONIC TECHNIQUE
    SRIVASTAVA, VK
    PRAKASH, R
    INTERNATIONAL JOURNAL OF FATIGUE, 1987, 9 (03) : 175 - 178
  • [25] FATIGUE PROCESSES IN FIBER REINFORCED-PLASTICS
    OWEN, MJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 294 (1411): : 535 - +
  • [26] Aging Testing of Glass-Fiber-Reinforced Plastics by Determining Fatigue Strength.
    Nowak, Marian
    Materialpruefung/Materials Testing, 1986, 28 (7-8): : 225 - 228
  • [27] Fracture and acoustic emission characteristics of glass fiber reinforced plastics planes for hot water
    Morii, Tohru
    Tanimoto, Toshio
    Hamada, Hiroyuki
    Maekawa, Zen-Ichiro
    Hirano, Takahiro
    Kiyosumi, Kenji
    1600, Publ by Soc of Plastics Engineers, Brookfield, CT, United States (15):
  • [28] Determination of the interlaminar fracture toughness of glass-fiber-reinforced plastics on ring segments
    Solodilov, VI
    Bazhenov, SL
    Gorbatkina, YA
    Kuperman, AM
    MECHANICS OF COMPOSITE MATERIALS, 2003, 39 (05) : 407 - 414
  • [29] Determination of the Interlaminar Fracture Toughness of Glass-Fiber-Reinforced Plastics on Ring Segments
    V. I. Solodilov
    S. L. Bazhenov
    Yu. A. Gorbatkina
    A. M. Kuperman
    Mechanics of Composite Materials, 2003, 39 : 407 - 414
  • [30] Glass fiber-reinforced plastics in scrubbers
    Lux, R
    CORROSIVE DAMAGE IN POWER PLANTS, 1997, 1333 : 55 - 67