Exact analytical solution of the Flory-Huggins model and extensions to multicomponent systems

被引:0
|
作者
de Souza, J. Pedro [1 ]
Stone, Howard A. [2 ]
机构
[1] Princeton Univ, Omenn Darling Bioengn Inst, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2024年 / 161卷 / 04期
关键词
THERMOREVERSIBLE GELATION; FREE-ENERGY; POLYMER; THERMODYNAMICS; MIXTURES;
D O I
10.1063/5.0215923
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Flory-Huggins theory describes the phase separation of solutions containing polymers. Although it finds widespread application from polymer physics to materials science to biology, the concentrations that coexist in separate phases at equilibrium have not been determined analytically, and numerical techniques are required that restrict the theory's ease of application. In this work, we derive an implicit analytical solution to the Flory-Huggins theory of one polymer in a solvent by applying a procedure that we call the implicit substitution method. While the solutions are implicit and in the form of composite variables, they can be mapped explicitly to a phase diagram in composition space. We apply the same formalism to multicomponent polymeric systems, where we find analytical solutions for polydisperse mixtures of polymers of one type. Finally, while complete analytical solutions are not possible for arbitrary mixtures, we propose computationally efficient strategies to map out coexistence curves for systems with many components of different polymer types.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [21] On the applicability of Flory-Huggins theory to ternary starch-water-solute systems
    Habeych, Edwin
    Guo, Xiaojing
    van Soest, Jeroen
    van der Goot, Atze Jan
    Boom, Remko
    CARBOHYDRATE POLYMERS, 2009, 77 (04) : 703 - 712
  • [22] The use of Flory-Huggins parameters as a measure of interactions in polymer-filler systems
    Milczewska, Kasylda
    Voelkel, Adam
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (13) : 1853 - 1862
  • [23] Determination of the parameters of the flory-huggins model to estimate the cloud point of nonionic surfactants
    Determinación de los parámetros del modelo de flory-huggins para estimación del punto de nube de surfactantes no iónicos
    De L. Araújo, A.A. (alessandro_alisson@yahoo.com.br), 1600, Centro de Informacion Tecnologica (25): : 165 - 174
  • [24] VACANCY SOLUTION THEORY OF ADSORPTION USING FLORY-HUGGINS ACTIVITY-COEFFICIENT EQUATIONS
    COCHRAN, TW
    KABEL, RL
    DANNER, RP
    AICHE JOURNAL, 1985, 31 (02) : 268 - 277
  • [25] Solution Lithography for Colloidal Crystal Patterning: Revisiting Flory-Huggins Interaction Parameters and Co-Nonsolvent Systems
    Kim, Jung Yeon
    Song, Ji Eun
    Choi, Yeon Jae
    Pyun, Seung Beom
    Cho, Eun Chul
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2021, 38 (03)
  • [26] Thermal behavior of critical micelle concentration from the standpoint of flory-huggins model
    Lim, Kyung-Hee
    Bulletin of the Korean Chemical Society, 2009, 30 (09) : 2001 - 2006
  • [27] Monodisperse Thermodynamic Model Based on Chemical plus Flory-Huggins Polymer Solution Theories for Predicting Asphaltene Precipitation
    Mohammadi, Amir H.
    Eslamimanesh, Ali
    Richon, Dominique
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (10) : 4041 - 4055
  • [28] Segregation and association in mixed polymer solutions from Flory-Huggins model calculations
    Bergfeldt, K
    Piculell, L
    Linse, P
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (09): : 3680 - 3687
  • [29] CALCULATION OF BINARY AND MULTICOMPONENT VAPOR-LIQUID EQUILIBRIA WITH 2-PARAMETER FLORY-HUGGINS EQUATION
    WIEHE, IA
    DORAI, S
    RADER, CG
    CHANDRASEKHAR, A
    CHEMICAL ENGINEERING SCIENCE, 1971, 26 (06) : 901 - +
  • [30] Description of the liquid-liquid equilibrium in binary and multicomponent CFC/lubricating oil mixtures by means of an extended Flory-Huggins model
    Musso, E
    Tesser, R
    Basile, G
    Di Serio, M
    Santacesaria, E
    JOURNAL OF FLUORINE CHEMISTRY, 2000, 103 (01) : 41 - 51