Extrusion-based 3D printing for development of complex capsular systems for advanced drug delivery

被引:1
|
作者
Algahtani, Mohammed S. [1 ]
Ahmad, Javed [1 ]
Mohammed, Abdul Aleem [1 ]
Ahmad, Mohammad Zaki [1 ]
机构
[1] Najran Univ, Coll Pharm, Dept Pharmaceut, Najran, Saudi Arabia
关键词
3D printing; FDM; PAM; Capsular shell; Controlled release; Targeted delivery; Personalized medicine; FLOATING TABLETS; MODIFIED RELEASE; DESIGN; COMBINATION; PHARMACEUTICALS; TECHNOLOGY; DEVICE; FDM;
D O I
10.1016/j.ijpharm.2024.124550
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
This review explores the feasibility of extrusion-based 3D printing techniques for producing complex dosage forms (such as capsular shells/devices) that provide controlled drug release and targeted delivery. The current discussion explores how extrusion-based 3D printing techniques, particularly Fused Deposition Modelling (FDM) and Pressure-Assisted Modelling (PAM), offer significant advantages in fabricating such complex dosage forms. This technology enables the fabrication of single-, dual-, or multi-compartment capsular systems with customized designs/geometry of the capsular shell to achieve delayed, sustained, or pulsatile drug release. The impact of customized design/geometry on the biopharmaceutical performances of loaded therapeutics is comprehensively discussed. The potential of 3D printing techniques for different specialized drug delivery purposes like gastric floating, implants, suppositories, and printfills are also addressed. This technique has the potential to significantly improve the therapeutic outcomes, and patient adherence to medication regimens, and pave the way for personalized medicine.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Micro-cable reinforced geopolymer composite for extrusion-based 3D printing
    Ma, Guowei
    Li, Zhijian
    Wang, Li
    Bai, Gang
    MATERIALS LETTERS, 2019, 235 : 144 - 147
  • [42] Structure-property relationships of multifunctional polyesters for extrusion-based 3D printing
    Jain, Tanmay
    Govindarajan, Sudhanva
    Clay, William
    Joy, Abraham
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [43] Extrusion-based 3D printing of osteoinductive scaffolds with a spongiosa-inspired structure
    Kuehl, Julie
    Gorb, Stanislav
    Kern, Matthias
    Klueter, Tim
    Kuehl, Sebastian
    Seekamp, Andreas
    Fuchs, Sabine
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [44] Effect of Nanostructured Silica Additives on the Extrusion-Based 3D Concrete Printing Application
    Liu, Zhenbang
    Li, Mingyang
    Moo, Guo Sheng James
    Kobayashi, Hitoshi
    Wong, Teck Neng
    Tan, Ming Jen
    JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (05):
  • [45] Influence of powder feedstock characteristics on extrusion-based 3D printing of magnetocaloric structures
    Sharma, Vaibhav
    Goldsworthy, Eddie
    Hadimani, Ravi L.
    Zhao, Hong
    Barua, Radhika
    MATERIALS RESEARCH EXPRESS, 2024, 11 (04)
  • [46] Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing
    Ma, Guowei
    Li, Zhijian
    Wang, Li
    Wang, Fang
    Sanjayan, Jay
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 202 : 770 - 783
  • [47] Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients
    Trachtenberg, Jordan E.
    Placone, Jesse K.
    Smith, Brandon T.
    Fisher, John P.
    Mikos, Antonios G.
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2017, 28 (06) : 532 - 554
  • [48] Application of Protein in Extrusion-Based 3D Food Printing: Current Status and Prospectus
    Guo, Ziang
    Arslan, Muhammad
    Li, Zhihua
    Cen, Shaoyi
    Shi, Jiyong
    Huang, Xiaowei
    Xiao, Jianbo
    Zou, Xiaobo
    FOODS, 2022, 11 (13)
  • [49] Design and simulation of spiral blade in the nozzle for the extrusion-based 3D printing concrete
    Pu, Xianghao
    Zhang, Ruikang
    Du, Jiashuai
    Zhang, Hui
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2025,
  • [50] Extrusion-based 3D printing of collagen scaffolds with native-like organization
    Vena, Paula
    Jimenez, Marcela Garcia
    Castilho, Miguel Dias
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)