Carbon-coated current collectors in lithium-ion batteries and supercapacitors: Materials, manufacture and applications

被引:7
|
作者
Hao, Hongqing [1 ]
Tan, Rui [1 ,2 ]
Ye, Chunchun [3 ]
Low, Chee Tong John [1 ]
机构
[1] Univ Warwick, Warwick Electrochem Engn, Warwick Manufacture Grp, Coventry CV4 7AL, England
[2] Swansea Univ, Dept Chem Engn, Swansea SA1 8EN, Wales
[3] Univ Edinburgh, EaStCHEM Sch Chem, Edinburgh, Scotland
基金
英国工程与自然科学研究理事会; “创新英国”项目;
关键词
batteries; carbon coating; current collector; energy storage devices; material solutions; supercapacitors; AL CURRENT-COLLECTOR; COPPER CURRENT COLLECTOR; RESISTANT CURRENT COLLECTOR; ALUMINUM CURRENT COLLECTOR; REDUCED GRAPHENE OXIDE; FOAM CURRENT COLLECTOR; 3D CURRENT COLLECTOR; CU CURRENT COLLECTOR; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE;
D O I
10.1002/cey2.604
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The current collector is a crucial component in lithium-ion batteries and supercapacitor setups, responsible for gathering electrons from electrode materials and directing them into the external circuit. However, as battery systems evolve and the demand for higher energy density increases, the limitations of traditional current collectors, such as high contact resistance and low corrosion resistance, have become increasingly evident. This review investigates the functions and challenges associated with current collectors in modern battery and supercapacitor systems, with a particular focus on using carbon coating methods to enhance their performance. Surface coating, known for its simplicity and wide applicability, emerges as a promising solution to address these challenges. The review provides a comprehensive overview of carbon-coated current collectors across various types of metal and nonmetal substrates in lithium-ion batteries and supercapacitors, including a comparative analysis of coating materials and techniques. It also discusses methods for manufacturing carbon-coated current collectors and their practical implications for the industry. Furthermore, the review explores prospects and opportunities, highlighting the development of next-generation high-performance coatings and emphasizing the importance of advanced current collectors in optimizing energy device performance. This work provides a comprehensive review of carbon-coated current collectors in lithium-ion batteries and supercapacitors, focusing on coating materials and methods as well as the modern approaches in industrial manufacturing. It concludes by exploring future prospects and opportunities, establishing a clear connection from the significance of these energy devices to the specific role of advanced current collectors in optimizing their performance.image
引用
收藏
页数:36
相关论文
共 50 条
  • [41] Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries
    Kim, Kun Woo
    Park, Hosang
    Lee, Jae Gil
    Kim, Jongjung
    Kim, Young-Ugk
    Ryu, Ji Heon
    Kim, Jae Jeong
    Oh, Seung M.
    ELECTROCHIMICA ACTA, 2013, 103 : 226 - 230
  • [42] Graphene enhanced carbon-coated tin dioxide nanoparticles for lithium-ion secondary batteries
    Li, Zhongtao
    Wu, Guiliang
    Liu, Dong
    Wu, Wenting
    Jiang, Bo
    Zheng, Jingtang
    Li, Yanpeng
    Li, Junhua
    Wu, Mingbo
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) : 7471 - 7477
  • [43] Carbon-coated high nickel cathode nanosheet with stable structure for lithium-ion batteries
    Jialin Guo
    Rui Ding
    Yan Wu
    Peng Zheng
    Applied Physics A, 2023, 129
  • [44] Clay/carbon nanocomposites as precursors of electrode materials for lithium-ion batteries and supercapacitors
    Duclaux, L
    Frackowiak, E
    Gibinski, T
    Benoit, R
    Beguin, F
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 340 : 449 - 454
  • [45] Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries
    Ng, See-How
    Wang, Jiazhao
    Wexler, David
    Konstantinov, Konstantin
    Guo, Zai-Ping
    Liu, Hua-Kun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (41) : 6896 - 6899
  • [46] Hybrid films constructed by carbon nanotubes and carbon nanocoils as current collectors for lithium-ion batteries
    Chen, Huan
    Zhao, Yongpeng
    Zhao, Huitong
    Huang, Hui
    Wen, Ningxuan
    Wang, Chen
    Fan, Zeng
    Hao, Liang
    Pan, Lujun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 935
  • [47] Carbon-coated vanadium selenide as anode for lithium-ion batteries and sodium-ion batteries with enhanced electrochemical performance
    Yang, Xinhui
    Zhang, Zhian
    MATERIALS LETTERS, 2017, 189 : 152 - 155
  • [48] Electrochemical Stability of Carbon Fibers Compared to Aluminum as Current Collectors for Lithium-Ion Batteries
    Martha, Surendra K.
    Dudney, Nancy J.
    Kiggans, James O.
    Nanda, Jagjit
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (10) : A1652 - A1658
  • [49] Passivation and corrosion of Al current collectors in lithium-ion batteries
    Du, Pin
    Wan, Jiale
    Qu, Jiakang
    Xie, Hongwei
    Wang, Dihua
    Yin, Huayi
    NPJ MATERIALS DEGRADATION, 2024, 8 (01)
  • [50] In situ synthesis of expanded graphite embedded with amorphous carbon-coated aluminum particles as anode materials for lithium-ion batteries
    Zhao, Xin
    Zhao, Tingkai
    Peng, Xiarong
    Yang, Lei
    Shu, Yuan
    Jiang, Tao
    Ahmad, Ishaq
    NANOTECHNOLOGY REVIEWS, 2020, 9 (01) : 436 - 444