Forced Wetting of Shear-Thinning Fluids in Confined Capillaries

被引:0
|
作者
Wang, Xiong [1 ]
Yuan, Zhenyue [1 ]
Chen, Feipeng [2 ]
Yao, Xiaoxue [1 ]
Yu, Fanfei [1 ]
Wang, Steven [1 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, Kowloon, Hong Kong 999077, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Kowloon, Hong Kong 999077, Peoples R China
关键词
DYNAMIC CONTACT-ANGLE; ADVANCING INTERFACE; LINE; KINETICS; LIQUIDS; GEOMETRY; SURFACE; SPEED; FLOW;
D O I
10.1021/acs.langmuir.4c02728
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dynamic wetting in confined spaces is pivotal for the functional efficiency of biological organisms and offers significant potential for optimizing microdevices. The fluids encountered in such scenarios often exhibit shear-thinning behavior, which gives rise to complex interfacial phenomena. Here, we present an intriguing wetting phenomenon for shear-thinning fluids in confined capillary spaces. The employed shear-thinning fluids, carboxymethyl cellulose aqueous solutions with mass fractions of 0.5, 1.0, and 1.5 wt %, exhibit an intermediate state between ideal viscoelastic liquids, viscoelastic solids, and gel-like properties. We elucidate the geometric effect on its capillary wetting behavior, demonstrating that distortion of the moving contact line alters flow dynamics near the front corner, modifying the viscous resistance. This intricate interplay between the modified viscous resistance and the driving force results in a novel dynamic equilibrium distinct from that in Newtonian fluids. We further reveal that the viscous resistance in confined capillaries is controlled by both the morphology of the moving contact line and the shear-thinning exponent, particularly within the range of 0.7 to 1. This novel mechanism provides a pathway for manipulating the wetting dynamics of complex fluids in confined spaces.
引用
收藏
页码:21222 / 21231
页数:10
相关论文
共 50 条
  • [21] Mixing Performance of Baffles in Shear-Thinning Fluids
    Furukawa, Haruki
    Mizuno, Yoshito
    Kato, Yoshihito
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (08) : 1440 - 1446
  • [22] Sedimentation of Fractal Aggregates in Shear-Thinning Fluids
    Trofa, Marco
    D'Avino, Gaetano
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [23] On the rheological characteristics of the shear-thinning model fluids
    Jaworski, Z
    Kiljanski, T
    INZYNIERIA CHEMICZNA I PROCESOWA, 2005, 26 (03): : 513 - 522
  • [24] Dynamics and rheology of particles in shear-thinning fluids
    Datt, Charu
    Elfring, Gwynn J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2018, 262 : 107 - 114
  • [25] POWER CONSUMPTION FOR MIXING OF SHEAR-THINNING FLUIDS
    Ghirisan , Adina
    Miclaus, Vasile
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2021, 66 (02): : 247 - 254
  • [26] Turbulent pipe flow of shear-thinning fluids
    Rudman, M
    Blackburn, HM
    Graham, LJW
    Pullum, L
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 118 (01) : 33 - 48
  • [27] Thermal convection of viscoelastic shear-thinning fluids
    Albaalbaki, Bashar
    Khayat, Roger E.
    Ahmed, Zahir U.
    FLUID DYNAMICS RESEARCH, 2016, 48 (06)
  • [28] Soft lubrication of model shear-thinning fluids
    Xu, Yuan
    Stokes, Jason R.
    TRIBOLOGY INTERNATIONAL, 2020, 152
  • [29] Lattice Boltzmann Simulation of Shear-Thinning Fluids
    Dirk Kehrwald
    Journal of Statistical Physics, 2005, 121 : 223 - 237
  • [30] Lattice Boltzmann simulation of shear-thinning fluids
    Kehrwald, D
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (1-2) : 223 - 237