Extended twin parametric margin support vector regression

被引:0
|
作者
Sahleh, Ali [1 ]
Salahi, Maziar [1 ]
Eskandari, Sadegh [2 ]
Khodamoradi, Tahereh [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Appl Math, Namjoo Blvd, Rasht 41938-33697, Guilan, Iran
[2] Univ Guilan, Fac Math Sci, Dept Comp Sci, Namjoo Blvd, Rasht 41938 33697, Guilan, Iran
关键词
Support vector regression; Twin support vector regression; Hinge-loss function; Stock market prediction; FEATURE-EXTRACTION; CLASSIFICATION; MACHINE;
D O I
10.1007/s12597-024-00829-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Support Vector Regression (SVR) and its extensions have demonstrated effectiveness in addressing regression problems, yet they face challenges, including high computational costs for large-scale datasets and sensitivity to outliers. To mitigate these limitations, various techniques such as twin SVR (TWSVR) and robust TWSVR (RTWSVR) have been proposed. However, existing approaches may suffer from issues like alignment of the final regressor with the dataset during the learning processes. In this paper, we introduce an extended twin parametric margin SVR (ETPMSVR) model inspired by the principles of robust geometric TPMSVM (RGTPSVM). The ETPMSVR addresses these challenges by integrating the average of & varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}-insensitive upper and lower bounds of the regressor into the objective function and constraints, ensuring alignment with the dataset and hence the final regerssor is found along with two boundary hyperplanes during the training process in a single quadratic programming problem. Additionally, a hinge-loss function is incorporated to enhance robustness against outliers. We derive the dual formulation to improve computational efficiency. Experiments on a diverse range of datasets, 10 UCI datasets and 8 S &P index datasets from financial market, demonstrate the efficacy of the proposed model in comparison to various benchmarks, including TWSVR, RTWSVR, multi-layer perceptron, and long short-term memory network.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Asymmetric ν-twin support vector regression
    Xu, Yitian
    Li, Xiaoyan
    Pan, Xianli
    Yang, Zhiji
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (12): : 3799 - 3814
  • [22] A weighted twin support vector regression
    Xu, Yitian
    Wang, Laisheng
    KNOWLEDGE-BASED SYSTEMS, 2012, 33 : 92 - 101
  • [23] Smooth twin support vector regression
    Xiaobo Chen
    Jian Yang
    Jun Liang
    Qiaolin Ye
    Neural Computing and Applications, 2012, 21 : 505 - 513
  • [24] Reduced twin support vector regression
    Singh, Mittul
    Chadha, Jivitej
    Ahuja, Puneet
    Jayadeva
    Chandra, Suresh
    NEUROCOMPUTING, 2011, 74 (09) : 1474 - 1477
  • [25] Asymmetric ν-twin support vector regression
    Yitian Xu
    Xiaoyan Li
    Xianli Pan
    Zhiji Yang
    Neural Computing and Applications, 2018, 30 : 3799 - 3814
  • [26] A Novel Twin Support Vector Regression
    Xu, Yitian
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (02) : 627 - 640
  • [27] An overview on twin support vector regression
    Huang, Huajuan
    Wei, Xiuxi
    Zhou, Yongquan
    NEUROCOMPUTING, 2022, 490 : 80 - 92
  • [28] An ε-twin support vector machine for regression
    Shao, Yuan-Hai
    Zhang, Chun-Hua
    Yang, Zhi-Min
    Jing, Ling
    Deng, Nai-Yang
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (01): : 175 - 185
  • [29] Twin support vector quantile regression
    Ye, Yafen
    Xu, Zhihu
    Zhang, Jinhua
    Chen, Weijie
    Shao, Yuanhai
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [30] Modified twin support vector regression
    Parastalooi, Nafiseh
    Amiri, Ali
    Aliheidari, Parisa
    NEUROCOMPUTING, 2016, 211 : 84 - 97