Graph-Regularized Non-Negative Matrix Factorization for Single-Cell Clustering in scRNA-Seq Data

被引:0
|
作者
Jiang, Hanjing [1 ]
Wang, Mei-Neng [2 ,3 ]
Huang, Yu-An [4 ]
Huang, Yabing [5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Informat Proc & Intelligent Control, Minist China, Wuhan, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[3] Yichun Univ, Sch Math & Comp Sci, Yichun 336000, Peoples R China
[4] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
[5] Wuhan Univ, Renmin Hosp, Dept Pathol, Wuhan 430060, Peoples R China
基金
中国国家自然科学基金;
关键词
Kernel; Laplace equations; Bioinformatics; Clustering algorithms; Sparse matrices; Data mining; Unsupervised learning; scRNA-seq; non-negative matrix factorization; clustering; gene marker; HETEROGENEITY;
D O I
10.1109/JBHI.2024.3400050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advent of single-cell RNA sequencing (scRNA-seq) has brought forth fresh perspectives on intricate biological processes, revealing the nuances and divergences present among distinct cells. Accurate single-cell analysis is a crucial prerequisite for in-depth investigation into the underlying mechanisms of heterogeneity. Due to various technical noises, like the impact of dropout values, scRNA-seq data remains challenging to interpret. In this work, we propose an unsupervised learning framework for scRNA-seq data analysis (aka Sc-GNNMF). Based on the non-negativity and sparsity of scRNA-seq data, we propose employing graph-regularized non-negative matrix factorization (GNNMF) algorithm for the analysis of scRNA-seq data, which involves estimating cell-cell sparse similarity and gene-gene sparse similarity through Laplacian kernels and p-nearest neighbor graphs (p-NNG). By assuming intrinsic geometric local invariance, we use a weighted p-nearest known neighbors (p-NKN) to optimize the scRNA-seq data. The optimized scRNA-seq data then participates in the matrix decomposition process, promoting the closeness of cells with similar types in cell-gene data space and determining a more suitable embedding space for clustering. Sc-GNNMF demonstrates superior performance compared to other methods and maintains satisfactory compatibility and robustness, as evidenced by experiments on 11 real scRNA-seq datasets. Furthermore, Sc-GNNMF yields excellent results in clustering tasks, extracting useful gene markers, and pseudo-temporal analysis.
引用
收藏
页码:4986 / 4994
页数:9
相关论文
共 50 条
  • [21] Adaptive graph regularized non-negative matrix factorization with self-weighted learning for data clustering
    Ziping Ma
    Jingyu Wang
    Huirong Li
    Yulei Huang
    Applied Intelligence, 2023, 53 : 28054 - 28073
  • [22] Adaptive graph regularized non-negative matrix factorization with self-weighted learning for data clustering
    Ma, Ziping
    Wang, Jingyu
    Li, Huirong
    Huang, Yulei
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28054 - 28073
  • [23] Deep graph regularized non-negative matrix factorization for multi-view clustering
    Li, Jianqiang
    Zhou, Guoxu
    Qiu, Yuning
    Wang, Yanjiao
    Zhang, Yu
    Xie, Shengli
    NEUROCOMPUTING, 2020, 390 : 108 - 116
  • [24] Determining Functional Units of Tongue Motion via Graph-Regularized Sparse Non-negative Matrix Factorization
    Woo, Jonghye
    Xing, Fangxu
    Lee, Junghoon
    Stone, Maureen
    Prince, Jerry L.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT II, 2014, 8674 : 146 - 153
  • [25] Graph Regularized Non-Negative Low-Rank Matrix Factorization for Image Clustering
    Li, Xuelong
    Cui, Guosheng
    Dong, Yongsheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (11) : 3840 - 3853
  • [26] Orthogonal graph regularized non-negative matrix factorization under sparse constraints for clustering
    Chen, Yasong
    Qu, Guangwei
    Zhao, Junjian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [27] Graph Regularized Lp Smooth Non-negative Matrix Factorization for Data Representation
    Leng, Chengcai
    Zhang, Hai
    Cai, Guorong
    Cheng, Irene
    Basu, Anup
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (02) : 584 - 595
  • [28] Graph Regularized Lp Smooth Non-negative Matrix Factorization for Data Representation
    Chengcai Leng
    Hai Zhang
    Guorong Cai
    Irene Cheng
    Anup Basu
    IEEE/CAAJournalofAutomaticaSinica, 2019, 6 (02) : 584 - 595
  • [29] scRNMF: An imputation method for single-cell RNA-seq data by robust and non-negative matrix factorization
    Qian, Yuqing
    Zou, Quan
    Zhao, Mengyuan
    Liu, Yi
    Guo, Fei
    Ding, Yijie
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (08)
  • [30] Robust Adaptive Graph Regularized Non-Negative Matrix Factorization
    He, Xiang
    Wang, Qi
    Li, Xuelong
    IEEE ACCESS, 2019, 7 : 83101 - 83110