Exploring Fragment Adding Strategies to Enhance Molecule Pretraining in AI-Driven Drug Discovery

被引:5
|
作者
Meng, Zhaoxu [1 ]
Chen, Cheng [2 ]
Zhang, Xuan [2 ]
Zhao, Wei [3 ]
Cui, Xuefeng [2 ]
机构
[1] Shandong Univ, Sch Life Sci, Qingdao 266237, Peoples R China
[2] Shandong Univ, Sch Comp Sci & Technol, Qingdao 266237, Peoples R China
[3] Shandong Univ, State Key Lab Microbial Technol, Qingdao 266237, Peoples R China
来源
BIG DATA MINING AND ANALYTICS | 2024年 / 7卷 / 03期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Drugs; Task analysis; Databases; Training; Chemicals; Vocabulary; Fingerprint recognition; pretraining; information retrieval; drug discovery; virtual screening; molecule property prediction;
D O I
10.26599/BDMA.2024.9020003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The effectiveness of Al-driven drug discovery can be enhanced by pretraining on small molecules. However, the conventional masked language model pretraining techniques are not suitable for molecule pretraining due to the limited vocabulary size and the non-sequential structure of molecules. To overcome these challenges, we propose FragAdd, a strategy that involves adding a chemically implausible molecular fragment to the input molecule. This approach allows for the incorporation of rich local information and the generation of a high-quality graph representation, which is advantageous for tasks like virtual screening. Consequently, we have developed a virtual screening protocol that focuses on identifying estrogen receptor alpha binders on a nucleus receptor. Our results demonstrate a significant improvement in the binding capacity of the retrieved molecules. Additionally, we demonstrate that the FragAdd strategy can be combined with other self-supervised methods to further expedite the drug discovery process.
引用
收藏
页码:565 / 576
页数:12
相关论文
共 50 条
  • [31] Biological AIE Molecules: Innovations in Synthetic Design and AI-Driven Discovery
    Dave, Raj
    Pandey, Kshipra
    Khatri, Viral
    Patel, Ritu
    Gour, Nidhi
    Bhatia, Dhiraj
    ADVANCED BIOLOGY, 2025,
  • [32] AI-driven biomarker discovery: enhancing precision in cancer diagnosis and prognosis
    Alum, Esther Ugo
    DISCOVER ONCOLOGY, 2025, 16 (01)
  • [33] Science-Gym: A Simple Testbed for AI-Driven Scientific Discovery
    Cerrato, Mattia
    Schmitt, Nicholas
    Baur, Lennart
    Finkelstein, Edward
    Jukic, Selina
    Muenzel, Lars
    Paul, Felix Peter
    Pfannes, Pascal
    Rohr, Benedikt
    Schellenberg, Julius
    Wolf, Philipp
    Kramer, Stefan
    DISCOVERY SCIENCE, DS 2024, PT I, 2025, 15243 : 229 - 243
  • [34] SynAI: An AI-driven cancer drug synergism prediction platform
    Yan, Kuan
    Jia, Runjun
    Guo, Sheng
    CANCER RESEARCH, 2024, 84 (06)
  • [35] AI-Driven Financial Analysis: Exploring ChatGPT's Capabilities and Challenges
    Liu, Li Xian
    Sun, Zhiyue
    Xu, Kunpeng
    Chen, Chao
    INTERNATIONAL JOURNAL OF FINANCIAL STUDIES, 2024, 12 (03):
  • [36] Exploring the Usability and Trustworthiness of AI-Driven User Interfaces for Neurological Diagnosis
    Lombardi, Angela
    Marzo, Sofia
    Di Noia, Tommaso
    Di Sciascio, Eugenio
    Ardito, Carmelo
    ADJUNCT PROCEEDINGS OF THE 32ND ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2024, 2024, : 627 - 634
  • [37] Exploring AI-driven approaches for unstructured document analysis and future horizons
    Mahadevkar, Supriya V.
    Patil, Shruti
    Kotecha, Ketan
    Soong, Lim Way
    Choudhury, Tanupriya
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [38] AI-driven drug combination design for drug-resistant hematological malignancies
    Chow, Edward Kai-Hua
    MOLECULAR CANCER THERAPEUTICS, 2019, 18 (12)
  • [39] Exploring AI-Driven Business Models: Conceptualization and Expectations in the Machinery Industry
    Hahn, C.
    Traunecker, T.
    Niever, M.
    Basedow, G. N.
    2020 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2020, : 567 - 570
  • [40] AI-Driven Discovery of SARS-CoV-2 Main Protease Fragment-like Inhibitors with Antiviral Activity In Vitro
    Saramago, Luiz Carlos
    Santana, Marcos V.
    Gomes, Barbara Figueira
    Dantas, Rafael Ferreira
    Senger, Mario R.
    Borges, Pedro Henrique Oliveira
    Ferreira, Vivian Neuza dos Santos
    Rosa, Alice dos Santos
    Tucci, Amanda Resende
    Miranda, Milene Dias
    Lukacik, Petra
    Strain-Damerell, Claire
    Owen, C. David
    Walsh, Martin Austin
    Ferreira, Sabrina Baptista
    Silva-Junior, Floriano Paes
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (09) : 2866 - 2880