Statistical and machine learning models for predicting spalling in CRCP

被引:2
|
作者
Al-Khateeb, Ghazi G. [1 ,2 ]
Alnaqbi, Ali [1 ]
Zeiada, Waleed [1 ,3 ]
机构
[1] Univ Sharjah, Dept Civil & Environm Engn, POB 27272, Sharjah, U Arab Emirates
[2] Jordan Univ Sci & Technol, Dept Civil Engn, Irbid 22110, Jordan
[3] Mansoura Univ, Dept Publ Works Engn, Mansoura 35516, Egypt
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Spalling; Continuously reinforced concrete pavement; LTPP; Statistical analysis; Machine learning; Neural network; Prediction models; REINFORCED-CONCRETE PAVEMENT; PERFORMANCE;
D O I
10.1038/s41598-024-69999-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Continuously reinforced concrete pavement (CRCP), crucial for the resilience of transportation infrastructure owing to its continuous steel reinforcement, confronts a critical challenge in the form of spalling-a distress phenomenon posing a threat to pavement durability and overall structural integrity. The detachment or breakage of concrete from the surface compromises CRCP's functionality and raises safety concerns and escalating maintenance costs. To address this pressing issue, our study investigates the multifaceted factors influencing spalling, employing a comprehensive approach that integrates statistical and machine learning techniques for predictive modeling. Descriptive statistics meticulously profile the dataset, emphasizing age, thickness, precipitation, temperature, and traffic parameters. Regression analysis unveils key relationships, emphasizing the significance of age, annual temperature, annual precipitation, maximum humidity, and the initial International Roughness Index (IRI) as influential factors. The correlation matrix heatmap guides feature selection, elucidating intricate interdependencies. Simultaneously, feature importance analysis identifies age, Average Annual Daily Traffic (AADT), and total pavement thickness as crucial contributors to spalling. In machine learning, adopting models, including Gaussian Process Regression and ensemble tree models, is grounded in their diverse capabilities and suitability for the complex task at hand. Their varying predictive accuracies underscore the importance of judicious model selection. This research advances pavement engineering practices by offering nuanced insights into factors influencing spalling in CRCP, refining our understanding of spalling influences. Consequently, the study not only opens avenues for developing improved predictive methodologies but also enhances the durability of CRCP infrastructure, addressing broader implications for informed decision-making in transportation infrastructure management. The selection of Gaussian Process Regression and ensemble tree models stems from their adaptability to capture intricate relationships within the dataset, and their comparative performance provides valuable insights into the diverse predictive capabilities of these models in the context of CRCP spalling.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Predicting ACL Reconstruction Failure with Machine Learning: Development of Machine Learning Prediction Models
    Alaiti, Rafael Krasic
    Vallio, Caio Sain
    da Silva, Andre Giardino Moreira
    Gobbi, Riccardo Gomes
    Pecora, Jose Ricardo
    Helito, Camilo Partezani
    ORTHOPAEDIC JOURNAL OF SPORTS MEDICINE, 2025, 13 (03)
  • [22] Machine Learning and Statistical Models to Predict Postpartum Hemorrhage
    Young, Roger C.
    OBSTETRICS AND GYNECOLOGY, 2020, 136 (01): : 194 - 195
  • [23] Assessing Hydrological Simulations with Machine Learning and Statistical Models
    Rozos, Evangelos
    HYDROLOGY, 2023, 10 (02)
  • [24] Machine Learning and Statistical Models to Predict Postpartum Hemorrhage
    Venkatesh, Kartik K.
    Strauss, Robert A.
    Grotegut, Chad A.
    Heine, R. Philip
    Chescheir, Nancy C.
    Stringer, Jeffrey S. A.
    Stamilio, David M.
    Menard, Katherine M.
    Jelovsek, J. Eric
    OBSTETRICS AND GYNECOLOGY, 2020, 135 (04): : 935 - 944
  • [25] FORECASTING UNDER APPLYING MACHINE LEARNING AND STATISTICAL MODELS
    Elhag, Azhari A.
    Abu-Zinadah, Hanaa
    THERMAL SCIENCE, 2020, 24 : S131 - S137
  • [26] FORECASTING UNDER APPLYING MACHINE LEARNING AND STATISTICAL MODELS
    Elhag, Azhari A.
    Abu-Zinadah, Hanaa
    Elhag, Azhari A. (a.alhag@tu.edu.sa), 1600, Serbian Society of Heat Transfer Engineers (24):
  • [27] Statistical quantification of confounding bias in machine learning models
    Spisak, Tamas
    GIGASCIENCE, 2022, 11
  • [28] Predicting material consumption by cyclic oxidation spalling models
    Smialek, JL
    MATERIALS LIFETIME SCIENCE & ENGINEERING, 2003, : 147 - 154
  • [29] Predicting liver disorder based on machine learning models
    Zhao, Jing
    Wang, Peixia
    Pan, Yubiao
    JOURNAL OF ENGINEERING-JOE, 2022, 2022 (10): : 978 - 984
  • [30] Predicting Credit Repayment Capacity with Machine Learning Models
    Filiz, Gozde
    Bodur, Tolga
    Yaslidag, Nihal
    Sayar, Alperen
    Cakar, Tuna
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,