Moments of Artin-Schreier L-functions

被引:0
|
作者
Florea, Alexandra
Jones, Edna
Lalin, Matilde [1 ]
机构
[1] UC Irvine, Dept Math, 340 Rowland Hall,Off 540E, Irvine, CA 92697 USA
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2024年 / 75卷 / 04期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
DIRICHLET L-FUNCTIONS; RANDOM-MATRIX THEORY; HIGH POWERS; FROBENIUS CLASS; 4TH MOMENT; HYPERELLIPTIC CURVES; SHORT INTERVALS; ZETA-FUNCTIONS; ZEROS; STATISTICS;
D O I
10.1093/qmath/haae045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute moments of L-functions associated to the polynomial family of Artin-Schreier covers over F-q , where q is a power of a prime p > 2, when the size of the finite field is fixed and the genus of the family goes to infinity. More specifically, we compute the k th moment for a large range of values of k , depending on the sizes ofp p and q . We also compute the second moment in absolute value of the polynomial family, obtaining an exact formula with a lower order term, and confirming the unitary symmetry type of the family.
引用
收藏
页码:1255 / 1284
页数:30
相关论文
共 50 条